
Unlabeled Compression Schemes
for Maximum Classes?,??

Dima Kuzmin and Manfred K. Warmuth

Computer Science Department
University of California, Santa Cruz
{dima,manfred}@cse.ucsc.edu

Abstract. We give a compression scheme for any maximum class of VC
dimension d that compresses any sample consistent with a concept in the
class to at most d unlabeled points from the domain of the sample.

1 Introduction

Consider the following type of protocol between a learner and a teacher. Both
agree on a domain and a class of concepts (subsets of the domain). For instance,
the domain could be the plane and a concept the interior of an axis-parallel rec-
tangle (see Fig. 1). The teacher gives a set of training
examples (labeled domain points) to the learner. The
labels of this set are consistent with a concept (rec-
tangle) that is hidden from the learner. The learner’s
task is to predict the label of the hidden concept on
a new test point.
Intuitively, if the training and test points are drawn
from some fixed distribution, then the labels of the
test point can be predicted accurately provided the
number of training examples is large enough. The
sample size should grow with the inverse of the de-
sired accuracy and with the complexity or “dimen-
sion” of the concept class. The most basic notion of
dimension in this context is the Vapnik-Chervonenkis
dimension. This dimension is the size d of the maxi-
mum cardinality set such that all 2d labeling patterns
can be realized by a concept in the class. So with axis-
parallel rectangles, it is possible to label any set of 4
points in all possible ways as longs as no subset of 3
lies on a line. However for any 5 points, at least one

Fig. 1: An example set
consistent with some
axis-parallel rectangle.
Also shown is the smallest
axis-parallel rectangle
containing the compression
set (circled points). This
rectangle is consistent with
all examples. The hidden
rectangle generating the
data is dashed. “x” is the
next test point.

of the points lies inside the smallest rectangle of the remaining 4 points and this

? Supported by NSF grant CCR CCR 9821087
?? Some work on this paper was done while authors were visiting National ICT Aus-

tralia

disallows at least one of the 25 patterns.
The idea of sample compression in learning ([LW86]) stems from the observation
that you can often select a subset of the training examples to represent a hypoth-
esis consistent with all training examples. For instance in the case of rectangles,
it is sufficient to keep only the uppermost, lowermost, leftmost and rightmost
positive point. There are up to 4 points in the compression set (since some of
the 4 extreme points might coincide.) Assume the compression set represents
the smallest rectangle that contains it. This rectangle will always be consistent
with the entire sample.

Note that in the case of rectangles we need to keep at most 4 points and 4 also
is the Vapnik-Chervonenkis dimension of that class. One of the most tantalizing
conjectures in learning theory is the following ([FW95, War03]): For any concept
class of VC dimension d, there is a compression scheme that keeps at most VC
dimension many examples.

The maximum size of the compression sets also replaces the VC dimen-
sion in the PAC sample size bounds ([LW86, FW95, Lan03]). In the case of
compression schemes, the proofs of these bounds are strikingly simple. There
are many practical algorithms that use compression scheme techniques (e.g.
[MST02, SMJST03]). In particular Support Vector Machines can be interpreted
as a compression scheme where the essential support vectors are the compression
set ([vLBS04]). Also any algorithm with mistake bound M leads to a compression
scheme of size M [FW95].

The above conjecture was proven for maximum classes over a finite domain,
which are classes where the number of concepts coincides with a certain upper
bound. In [FW95] it was shown that for such classes there always exist com-
pression schemes that compress to exactly d labeled examples. In this paper,
we give an alternate compression scheme for maximum classes. Even though we
do not resolve the conjecture for arbitrary classes, we uncovered a great deal of
new combinatorics. Our new scheme compresses any sample consistent with a
concept to at most d unlabeled points from the sample. If m is the size of the
sample, then there are

(
m
≤d

)
sets of points of size up to d. For maximum classes,

the number of different labeling induced on any set of size m is also
(

m
≤d

)
. Thus

our new scheme is “tight”. In the previous scheme the number of all possible
compression sets was much bigger than the number of concepts.

Our new scheme reveals a lot of interesting combinatorial structure. Let us
represent finite classes as a binary table (see Fig. 2) where the rows are concepts
and the columns are the all points in the domain. Our compression scheme
represents concepts by subsets of size at most d. For any size k ≤ d, the concepts
represented by subsets of size up to k will be a maximum class of VC dimension
k. Our scheme “compresses” as follows: After receiving a set of examples we first
restrict ourselves to concepts that are consistent with the sample. We will show
that for our choice of representatives, there always will be exactly one of the
consistent concepts whose representative is completely contained in the sample
domain. Thus we simply compress to this representative and use the associated
concept as the hypothesis (see Fig. 2).

2

Concept classes can also be represented by cer-
tain undirected graphs called the one-inclusion
graphs (see, for instance, [HLW94]): The vertices
are the possible labelings of the example points and
edges are between concepts that disagree on a single
point. Note that each edge is naturally labeled by
the single point on which the incident concepts dis-
agree (see Fig. 4). Each prediction algorithm can be
used to orient the edges of the one-inclusion graphs
as follows: Assume we are given a labeling of some
m points x1, . . . , xm and an unlabeled test point x.
If there is still an ambiguity as to how x should be
labeled, then this corresponds to an edge (with la-
bel x) in the one-inclusion graph for x1, . . . , xm, x.
This edge connects the two possible extensions of
the labeling of x1, . . . , xm to the test point x. If the
algorithm predicts b, then orient the edge towards
the concept that labels x with bit b.
The vertices in the one-inclusion graph correspond
to the possible target concepts and if the predic-
tion is averaged over a random permutation of the
m + 1 points, then the probability of predicting
wrong is D

m+1 , where D is the out-degree of the
target. Therefore the canonical optimal algorithm
predicts with an orientation of the one-inclusion
graphs that minimizes the maximum out-degree
[HLW94, LLS02] and in [HLW94] it was shown that
this outdegree is at most the VC dimension d.
How is this all related to our new compression
scheme for maximum classes? We show that for any
edge labeled with x, exactly one of the two repre-

x1 x2 x3 x4 r(c)
c1 0 0 0 0 ∅
c2 0 0 1 0 {x3}
c3 0 0 1 1 {x4}
c4 0 1 0 0 {x2}
c5 0 1 0 1 {x3, x4}
c6 0 1 1 0 {x2, x3}
c7 0 1 1 1 {x2, x4}
c8 1 0 0 0 {x1}
c9 1 0 1 0 {x1, x3}
c10 1 0 1 1 {x1, x4}
c11 1 1 0 0 {x1, x2}

Fig. 2: Illustration of the un-
labeled compression scheme
for some maximum concept
class. The representatives for
each concept are indicated
in the right column and
also by underlining the cor-
responding positions in each
row. Suppose the sample is
x3 = 1,x4 = 0. The set of
concepts consistent with that
sample is {c2, c6, c9}. The rep-
resentative of exactly one of
these concepts is entirely con-
tained in the sample domain
{x3,x4}. For our sample this
representative is {x3} which
represents c2. So the com-
pressed sample becomes {x3}.

sentatives of the incident concepts contains x. Thus by orienting the edges to-
wards concept that does not have x, we immediately obtain an orientation of
the one-inclusion graph with maximum outdegree d (which is the best possible).

Again such a d-orientation immediately leads to prediction algorithms with
expected error d

m+1 , where m is the sample size [HLW94], and this bound is
optimal1 [LLS02].

1 Predicting with a d-orientation of the one-inclusion graph is also conjectured to lead
to optimal algorithms in the PAC model of learning [War04].

3

Regarding the general case: It suffices to show the conjec-
ture for maximal classes (i.e. classes where adding any concept
would increase the VC dimension). We don’t know of any nat-
ural example of a maximal concept class that is not maximum
even though it is easy to find small artificial cases (see Fig. 3).
We believe that much of the new methodology developed in
this paper for maximum classes will be useful in resolving the
general conjecture in the positive and think that in this paper
we made considerable progress towards this goal. In particular,
we developed a refined recursive structure of concept classes
and made the connection to orientations of the one-inclusion
graph. Also our scheme constructs a certain unique matching
that is interesting in its own right.
Even though the unlabeled compression schemes for maximum
classes are tight in some sense, they are not unique. There is
a strikingly simple algorithm that always seems to produces
a valid unlabeled compression scheme for maximum classes:
Construct a one-inclusion graph for the whole class; iteratively
remove a lowest degree vertex and represent this concept by
its set of incident dimensions (see Fig. 4 for an example run).

x1 x2 x3 x4

c1 0 0 1 0
c2 0 1 0 0
c3 0 1 1 0
c4 1 0 1 0
c5 1 1 0 0
c6 1 1 1 0
c7 0 0 1 1
c8 0 1 0 1
c9 1 0 0 0
c10 1 0 0 1

Fig. 3: A max-
imal classes of
VCdim 2 with 10
concepts. Max-
imum concept
classes of VCdim
2 have

�
4
≤2

�
= 11

concepts (see Fig.
2).

We have no proof of correctness of this algorithm and the resulting schemes do
not have as much recursive structure as the one presented in this paper. For the
small example given in Fig. 4 both algorithms can produce the same scheme.
Finally, we are reasonably confident that the conjecture holds in general because
we did a brute-force search for compression schemes in maximal classes of do-
main size up to 6. In doing so we noticed that maximal classes have many more
solutions than maximum ones.

2 Definitions

Let X be an instance domain (we allow X = ∅). A concept c is a mapping from
X to {0, 1}. Or we can view c as a characteristic function of a subset of its
domain X, denoted as dom(c), where c(x) = 1 iff the instance x ∈ dom(c) lies
in c. A concept class C is a set of concepts over the same domain (denoted as
dom(C)). Such a class is represented by a binary table (see Fig. 2), where the
rows correspond to concepts and the columns to the instances.

We denote the restriction of a concept c onto A ⊆ dom(c) as c|A. This concept
has domain A and labels that domain consistently with c. The restriction of an
entire class is denoted as C|A. This restriction is produced by simply removing
all columns not in A from the table for C and collapsing identical rows.2 We
use C − x as shorthand for C|(dom(C) r {x}) (removing column x from the
table) and C − A for C|(dom(C) r A) (see Fig. 5). A sample of a concept c is
any restriction c|A for some A ⊆ dom(c).

2 We define c|∅ = ∅. Note that C|∅ = {∅} if C 6= ∅ and ∅|∅ = ∅.

4

x2 x3 x4

0 0 0
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

x2 x3 x4

0 0 0
0 1 0
0 1 1
1 0 0

C − x1 Cx1

x1 x2 x3 x4

0 1 0 1
0 1 1 0
0 1 1 1
tailx1(C)

Fig. 4. One-inclusion graph for the concept class from Fig.
2: edges are labeled with the differing dimension. To con-
struct an unlabeled compression scheme, iteratively remove
a concept of minimum degree (numbers indicate order of
removal). The underlined dimensions indicate the represen-
tative of each concept (the incident dimensions when the
concept was removed). Arrows show the d-orientation de-
rived from the scheme. In this case our recursive algorithm
can produce the same scheme.

Fig. 5. the reduction, re-
striction and the tail of con-
cept class from Fig. 2 wrt
dimension x1

The reduction Cx of a concept class C wrt a dimension x ∈ dom(C) is a
special subset of C − x that also has domain X − {x}. It consists of all those
concepts in C−x that have two possible extensions onto concepts in C and thus
correspond to an edge labeled with x in the one-inclusion graph (see Fig. 5).

The tail of concept class C on dimension x consists of all concepts that don’t
have an edge labeled with x. We denote this subset of C as tailx(C). Note that
tails have the same domain as the original class.

A finite set of dimensions A ⊆ dom(C), is shattered by a concept class C if
for any possible labeling of A, the class C contains a concept consistent with
that labeling (i.e. size(C|A) = 2|A|).3 The Vapnik-Chervonenkis dimension of
a concept class C is the size of a maximum subset that is shattered by that
class ([Vap82]). We denote this size with V Cdim(C). Note that if |C| = 1, then
V Cdim(C) = 0.4

3 size(A) and |A| denote the number of elements in set A
4 V Cdim({∅}) = 0 and V Cdim(∅) is defined to be −1.

5

This paper makes some use of binomial coefficients
(
n
d

)
, for integers n ≥ 0 and

d.5 We use the following identity which holds for n > 0:
(
n
d

)
=

(
n−1

d

)
+

(
n−1
d−1

)
.

Let
(

n
≤d

)
be a shorthand for

∑d
i=0

(
n
i

)
. Then we have a similar identity for the

binomial sums (n > 0):
(

n
≤d

)
=

(
n−1
≤d

)
+

(
n−1
≤d−1

)
.

From [VC71] and [Sau72] we know that for all concept classes with V Cdim(C) =
d: |C| ≤

(|dom(C)|
≤d

)
(Sauer’s lemma). A concept class C with V Cdim(C) = d is

called maximum if ∀Y ⊆ dom(C), |Y | < ∞ : size(C|Y) =
(|Y |
≤d

)
. For finite

domains it is sufficient to check just the size of class itself. Additionally, if C is
a maximum class with d = V Cdim(C), then ∀x ∈ dom(C), C − x and Cx are
also maximum classes with VC dimensions d and d− 1 respectively ([Wel87]).

A concept class C is called maximal if adding any other concept to C will
increase its VC dimension. A maximum class on a finite domain is also maximal
([Wel87]). But there exist finite maximal classes, which are not maximum (see
Fig. 3 for an example).

From now on we only consider finite classes.

3 Unlabeled Compression Scheme

Our unlabeled compression scheme for maximum classes “represents” the con-
cepts as unlabeled subsets of dom(C) of size at most d. For any c ∈ C we call
r(c) its representative. Intuitively we want concepts to disagree on their rep-
resentatives. We say that two different concepts clash wrt r if c|r(c) ∪ r(c′) =
c′|r(c) ∪ r(c′).

Main definition: A representation mapping r of a maximum concept class
C must have the following two properties:

1. r is a bijection between C and subsets of dom(C) of size at most V Cdim(C)
and

2. no two concepts in C clash wrt r.

The following lemma shows how the non-clashing requirement can be used
to find a unique representative for each sample.

Lemma 1. Let r be any bijection between a finite maximum concept class C of
VC dimension d and subsets of dom(C) of size at most d. Then the following
two statements are equivalent:

1. No two concepts clash wrt r.
2. For all samples s from C there is exactly one concept c ∈ C that is consistent

with s and r(c) ⊆ dom(s).

Based on this lemma it is easy to see that a representation mapping r for
a maximum concept class C defines a compression scheme as follows. For any
sample s of C we compress s to the unique representative r(c) such that c is

5 Boundary values: for d > n or d < 0,
�

n
d

�
= 0; also

�
0
0

�
= 1.

6

consistent with s and r(c) ⊆ dom(s). Reconstruction is even simpler, since r
bijective. If s is compressed to the set r(c), then we reconstruct to the concept
c. See Fig. 2 for an example of how compression and reconstruction works.

Proof of Lemma 1

2 ⇒ 1 : Proof by contrapositive. Assume ¬1, i.e. there ∃c, c′ ∈ C, c 6= c′ s.t. c|r(c)∪
r(c′) = c′|r(c) ∪ r(c′). Then let s = c|r(c) ∪ r(c′). Clearly both c and c′ are
consistent with s and r(c), r(c′) ⊆ dom(s). This negates 2.

1 ⇒ 2 : Assume ¬2, i.e. there is a sample s for which there either zero or (at
least) two consistent concepts c for which r(c) ⊆ dom(s). If two concepts
c, c′ ∈ C are consistent with s and r(c), r(c′) ⊆ dom(s), then c|r(c)∪ r(c′) =
c′|r(c) ∪ r(c′) (which is ¬1). If there is no concept consistent c with s for
which r(c) ⊆ dom(s), then since

size(C|dom(s)) =
(
|dom(s)|
≤ d

)
= |{c : r(c) ⊆ dom(s)}| .

there must be another sample s′ with dom(s′) = dom(s) for which there are
two such concepts. So again ¬1 is implied.

2

We first show that a representation mapping r for a maximum classes can
be used to derive a d-orientation of the one-inclusion graph of class (i.e. an
orientation of the edges such that the outdegree of every vertex is ≤ d).

Lemma 2. For any representation mapping r of a maximum concept class C
and any edge c

x→ c′, the dimension x is contained in exactly one of the repre-
sentatives r(c) or r(c′).

Proof. Since c and c′ differ only on dimension x and c|r(c)∪r(c′) 6= c′|r(c)∪r(c′),
x lies in at least one of r(c), r(c′). Next we will show that x lies in exactly one.

We say an edge charges its incident concept if the dimension of the edge lies in
the representative of this concept. Every edge charges at least one of its incident
concepts and each concept c can receive at most |r(c)| charges. So the number
of charges is lower bounded by the number of edges and upper bounded by the
total size of all representations. The number of edges in C is N

(
N−1
≤d−1

)
, where

N = |dom(C)|, d = V Cdim(C).6 However, the total size of all representatives
is the same number because:

∑
c∈C

|r(c)| =
d∑

i=0

i

(
N

i

)
= N

d∑
i=1

(
N − 1
i− 1

)
= N

(
N − 1
≤ d− 1

)
.

This means that no edge can charge both of its incident concepts. ut

6 Number of edges is the size of Cx times the domain size

7

Recursive Algorithm
Input: a maximum concept class C
Output: a representation mapping r for C

1. If V Cdim(C) = 0 (i.e. C contains only one concept c), then r(c) := ∅.
Otherwise, pick any x ∈ dom(C) and recursively find a representation
mapping r for Cx.

2. Extend that mapping to 0Cx ∪ 1Cx:

∀c ∈ Cx : r(c ∪ {x = 0}) := r(c) and r(c ∪ {x = 1}) := r(c) ∪ x

3. Extend r to tailx(C) via the recursive process described in Fig. 7.

Fig. 6. the recursive algorithm for constructing an unlabeled compression scheme for
maximum classes

Corollary 1. For any representation mapping of a maximum class, directing
each edge away from the concept whose representative contains the dimension of
the edge, creates a d-orientation of the one-inclusion graph for the class.

Proof. The outdegree of every concept is equal to size of its representative, which
is ≤ d. ut

4 Recursive Algorithm for Constructing a Compression
Scheme

The unlabeled compression scheme for any maximum class can be found by the
recursive algorithm given in Fig. 6. This algorithm first finds a representation
mapping r for Cx (to subsets of size up to d − 1 of dom(C) − x). It then uses
this mapping for one copy of Cx in C and adds x to all the representatives in
the other copy. Finally the algorithm completes r by finding the representatives
for tailx(C) via yet another recursive procedure given in Fig. 7.

To prove the correctness of this algorithm (i.e. show that the constructed
mapping satisfies both conditions of the main definition) we need some additional
definitions and a sequence of lemmas.

Let aCx, a ∈ {0, 1} denote a concept class formed by extending all the
concepts in Cx back to dom(C) by setting the x dimension to a. Similarly, if
c ∈ Cx or c ∈ C − x, then ac denotes a concept formed from c by extending
it with the x dimension set to a. It is usually clear from the context what the
missing dimension is. Each dimension x ∈ dom(C) can be used to split class C

into three disjoint sets: C = 0Cx
�
∪ 1Cx

�
∪ tailx(C).

A forbidden labeling [FW95] for some class C is a sample s with dom(s) ⊆
dom(C) that is not consistent with any concept in C. We first note that for a
maximum class of VC dimension d there is exactly one forbidden labeling for
each set A of d+1 dimensions. This is because C|A is maximum with dimension

8

Recursive Tail Algorithm
Input: a maximum concept class C, x ∈ dom(C)
Output: an assignment of representatives to tailx(C)

1. If V Cdim(C) = 0 (i.e. C = {c}), then r(c) := ∅.
If V Cdim(C) = |dom(C)|, then r := ∅.
Otherwise, pick some y ∈ dom(C), y 6= x and recursively find representa-
tives for tailx(Cy) and tailx(C − y).

2. ∀c ∈ tailx(Cy) r tailx(C − y), find c′ ∈ tailx(C), s. t. c′ − y = c. Output:
r(c′) := r(c) ∪ {y}.

3. ∀c ∈ tailx(Cy) ∩ tailx(C − y), consider the concepts 0c, 1c ∈ tailx(C).
Let r1 be the representative for c from tailx(Cy) and r2 be the one from
tailx(C − y). Suppose, wlog, that 0c|r1 ∪ {y} is a sample not consistent
with any concept in Cx. Then r(0c) := r1 ∪ {y}, r(1c) := r2.

Fig. 7. the Recursive Tail Algorithm for finding tail representatives

d and its size is thus 2d+1 − 1. Our recursive procedure for the tail assigns all
concepts in tailx(C) a forbidden label of Cx (i.e. c|r(c) is a forbidden labeling
for Cx of size d). Then clashes between the tailx(C) and Cx are automatically
prevented.

Note the number of such forbidden labelings is
(
n−1

d

)
and we will now reason

that tailx(C) is of the same size. |dom(C)| = n. Since C−x = Cx
�
∪ tailx(C)−x

and Cx and C − x are maximum classes, we have (n = |dom(C)|)

|tailx(C)| = |C − x| − |Cx| =
(

n− 1
≤ d

)
−

(
n− 1
≤ d− 1

)
=

(
n− 1

d

)
.

We now reason that every tail concept contains some forbidden labeling of
Cx (of size d) and each forbidden labeling occurs in some tail concept. Since
any finite maximum class is maximal, adding any concept increases the VC
dimension. Adding any concept in tailx(C) to Cx increases the dimension of Cx

to d. Therefore all concepts in tailx(C) contain at least one forbidden labeling
of size d for Cx. Furthermore, since C −x shatters all sets of size d and C −x =

Cx
�
∪ tailx(C) − x all forbidden labels of Cx appear in the tail. Our recursive

procedure for the tail actually construct a matching between forbidden labelings
of size d for Cx and tail concepts that contain them. It remains to be shown that
such

1. the Recursive Tail Algorithm of Fig. 7 finds a matching and that
2. if the matched forbidden labelings are used as representatives, then there

are no clashes between tail concepts.

The following sequence of lemmas culminating in Theorem 1 establishes Part
1. The theorem actually shows that the matching between concepts in the tail
and forbidden labels of Cx is unique.

9

Lemma 3. Let C be a maximum class and x 6= y be two dimensions in dom(C).
Let the concepts of tailx(Cy) be indexed by i (i.e tailx(Cy) = {ci}) and let
tailx(C − y) = {cj}. Then there exist bit values ai, aj for the y dimension such
that tailx(C) = {aici} ∪ {ajcj}. (see Fig. 8 for an example).

Proof. First note that the sizes add up as they should:

|tailx(C)| =
(

n− 1
d

)
=

(
n− 2
d− 1

)
+

(
n− 2

d

)
= |tailx(Cy)|+ |tailx(C − y)| .

Next we will show that any concept in tailx(Cy) and tailx(C−y) can be mapped
to a concept in tailx(C) by extending it with a suitable y bit. We also have to
account for the possibility that there can be some concepts c ∈ tailx(Cy) ∩
tailx(C − y). These will need to be mapped back to two different concepts of
tailx(C).

Consider some concept c ∈ tailx(Cy). Since c ∈ Cy, both extensions 0c and
1c exist in C. (Note that the first bit is the y position.) If at least one of the
extensions lies in tailx(C), then we can choose one of the extensions and map c to
it. Assume that neither 0c and 1c lie in tailx(C). This means that these concepts
both have an x edge to some concepts 0c′, 1c′. But then c′ ∈ Cy and there is a
x edge between c and c′. Thus c /∈ tailx(Cy), which provides a contradiction.

Now consider a concept c ∈ tailx(C−y). It might have one or two extensions
back onto the full domain. In either case, any of these extensions will be in
tailx(C), because removing a y dimension will not hurt an existing x edge (e.g.
suppose 0c was the extension and was not in the tail possessing an x edge to
some 0c′, then c, c′ is an x edge in C − y).

Finally we need to avoid mapping back to the same concept. This can only
happen for concepts in tailx(Cy)∩ tailx(C− y). These concepts have two exten-
sions back to C and from the previous paragraph it follows that both of these
extensions are in tailx(C). So we can arbitrarily choose one of the extensions to
be mapped back from tail(Cy) and the other from tail(C − y). ut

Lemma 4. Cx − y = (C − y)x (see Fig. 9 for an illustration)

Proof. First, we show that Cx − y ⊂ (C − y)x. Take any c ∈ Cx − y. By the
definition of restriction there exists ay such that ayc ∈ Cx. Next, concepts in
Cx have two extensions back onto C: 0ayc, 1ayc ∈ C. From this we immediately
have by definition restriction that 0c, 1c ∈ C − y and c ∈ (C − y)x.

Both (C−y)x and Cx−y are maximum classes with domain size |dom(C)|−2
and VC dimension d − 1, thus they have the same size. This plus the fact that
Cx − y ⊂ (C − y)x means that they are in fact equal. ut

Corollary 2. Any forbidden labeling of (C − y)x is also a forbidden labeling of
Cx.

Proof. Forbidden labelings of (C−y)x do not include a label for y. Any forbidden
labeling of Cx that does not include y is then a forbidden labeling of Cx− y. By
Lemma 4, (C − y)x = Cx − y and thus these two classes have exactly the same
forbidden labelings. ut

10

x1 x3 x4

0 0 0
0 1 0
0 1 1
1 0 0
1 1 0
1 1 1

0 0 1

x1 x3 x4

0 0 0
1 0 0

0 1 0
0 1 1

x1 x2 x3 x4

0 1 0 1 tailx1(C − x2)
0 1 1 0 tailx1(C

x2)
0 1 1 1 tailx1(C

x2)

C − x2 Cx2 tailx1(C)

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 1 0
1 1 1

0 0 0
0 1 0
0 1 1
1 0 0

0 0
1 0
1 1

C − x2 Cx1 Cx1 − x2 = (C − x2)
x1

Fig. 8. illustration of Lemma 3. tailx1(C) can be
composed from tailx1(C

x2) and tailx1(C−x2); class
C is from figure 2, tails in classes are boxed and
the last column for tailx1(C) indicates whether the
concept comes from tailx1(C

x2) or tailx1(C − x2)

Fig. 9. illustration of the state-
ment of Lemma 4 - Cx1 − x2 =
(C −x2)

x1 ; class C is given in Fig.
2

Lemma 5. If we have a forbidden labeling for Cxy of size d−1, then there exists
a value for the y dimension such that extending this forbidden labeling with this
value gives us a forbidden labeling of size d for Cx.

Proof. We will establish a bijection between forbidden labelings of Cx of size
d that involve y and forbidden labelings of size d − 1 for Cxy. Since Cx is a
maximum class of VC dimension d−1 it has

(
n−1

d

)
forbidden labelings of size d -

one for every set of d coordinates. If we look only at the labelings that involve y,
there will be

(
n−2
d−1

)
of them. This is also the total number of forbidden labelings

of size d− 1 for Cxy.
A mapping is constructed as follows: A forbidden labeling of size d for Cx

that involves a y dimension becomes a forbidden labeling of size d − 1 for Cxy

by discarding the y dimension. Assume that the newly formed labeling is not
forbidden in Cxy. Then by extending the concept that contains it with both
one and zero back to Cx, we will hit the original forbidden set, thus forming a
contradiction.

Every forbidden set is mapped to a different forbidden labeling and by the
counting argument above we see that all forbidden sets are covered. Thus the
mapping is a bijection and the inverse of this mapping realizes the statement of
the lemma. ut

Theorem 1. For any maximum class C of VC dimension d and any x ∈
dom(C) it is possible to find a unique matching between the

(
n−1

d

)
concepts in

tailx(C) and the
(
n−1

d

)
forbidden labelings of size d for Cx, such that every con-

cept is matched to some forbidden labeling it contains and all forbidden labelings
are matched.

Proof. The proof will proceed by induction on d and n = |dom(C)|.
Base cases: If n = d, then we have a complete hypercube which has no tail

and the matching is empty. If d = 0, then there is a single concept which is the
tail and this concept is matched to the empty set.

11

Inductive hypothesis: For any maximum class C ′, such that V Cdim(C ′) < d
or |dom(C ′)| < n, the statement of the theorem holds.

Inductive step. Let x, y ∈ dom(C) and x 6= y. By Lemma 3, we can com-
pose tailx(C) from tailx(Cy) and tailx(C − y). Since V Cdim(Cx) = d − 1 and
|dom(C − x)| = n− 1, we can use the inductive hypothesis for these classes and
assume that the desired matchings already exist for tailx(Cy) and tailx(C − y).

Now we need to combine these matchings to form a matching for tailx(C).
See Fig. 7 for a description of this process. Concepts in tailx(C−y) are matched
to forbidden labelings of (C− y)x of size d. By Lemma 2, any forbidden labeling
of (C − y)x is also a forbidden labeling of Cx. Thus this part of the matching
transfers to the appropriate part of tailx(C) without alterations. On the other
hand, tailx(Cy) is matched to labelings of size d−1. We can make them labelings
of size d by adding some value for the y coordinate. Some care must be taken
here. Lemma 5 tells us that one of the two extensions will in fact have a forbidden
labeling of size d (that includes the y coordinate). In the case where just one
of two possible extensions of a concept in tailx(Cy) is in the tailx(C), there are
no problems (i.e. that concept will be the concept of Lemma 5, since the other
concept is in Cx and thus does not contain any forbidden labelings). There still
is the possibility that both extensions are in tailx(C). From the proof of Lemma
3 we see that this only happens to the concepts that are in tailx(Cy)∩ tailx(C−
y). Then, by Lemma 5 we can figure out which extension corresponds to the
forbidden labeling involving y and use that for the tailx(Cy) matching. The
other extension will correspond to the tailx(C − y) matching. Essentially, where
before the Lemma 3 told us to map the intersection tailx(Cy)∩tailx(C−y) back
to tailx(C) by assigning a bit arbitrarily, now we choose a bit in a specific way.

Now we know that a matching exists. Uniqueness of the matching can also be
argued from inductive assumptions on uniqueness for tailx(Cy) and tailx(C−y).

ut

Theorem 2. The Recursive Algorithm of Fig. 6 returns a representation map-
ping that satisfies both conditions of the Main Definition.

Proof. Proof by induction on d = V Cdim(C). The base case is d = 0: this class
has only one concept which is represented by the empty set.

The algorithm recurses on Cx and V Cdim(Cx) = d−1. Thus we can assume
that it has a correct representation mapping for Cx that uses sets of size at most
d− 1 for the representatives.

Bijection condition: It is easily seen that the algorithm uses all possible sets
that don’t involve x and are of size < d as representatives for 0Cx. The concepts
of 1Cx are represented by all sets of size ≤ d that contain x. Finally the concepts
in tailx(C) are represented by sets of size equal d that don’t contain x. This shows
that all sets of size up to d represent some concept.

No clashes condition: By the inductive assumption there cannot be any
clashes internally within each of the subclasses 0Cx and 1Cx. Clashes between
0Cx and 1Cx cannot occur because such concepts are always differentiated on
the x bit and x belongs to all representatives of 1Cx. By Theorem 1, we know

12

that concepts in the tail are assigned to representatives that define a forbid-
den labeling for Cx, thus clashes between the tail and 0Cx, 1Cx are prevented.
Finally, we need to argue that there cannot be any clashes internally within
the tail. By Theorem 1, the matching between concepts in tailx(C) and forbid-
den labeling of Cx is unique. So if this matching would result in a clash, i.e.
c1|r1∪ r2 = c2|r1∪ r2, then both c1 and c2 contain the forbidden labelings speci-
fied by representative r1 and r2. By swapping the assignment of forbidden labels
between c1 and c2 (i.e c1 is assigned to c1|r2 and c2 to c2|r1) we create a new
valid matching, thus contradicting the uniqueness. ut

5 Miscellaneous Lemmas

We conclude with some miscellaneous lemmas. The first one shows that the rep-
resentatives constructed by our algorithm induce a nesting of maximum classes.
The algorithm that iteratively removes a lowest degree vertex (see introduction
and Fig. 4) is not guaranteed to construct representatives with this property.

Lemma 6. Let C be a maximum concept class with VC dimension d and let
r be a representation mapping for C produced by the Recursive Algorithm. Let
Ck = {c ∈ C s. t. |r(c)| ≤ k}. Then Ck is a maximum concept class with VC
dimension k.

Proof. Proof by induction on d. Base case d = 0, class has only one concept and
the statement is trivial.

Let x ∈ dom(C) be the first dimension along which the Recursive Algorithm
works (i.e. it first recursively finds representatives for Cx). Then we can use the
inductive assumption for Cx.

Let 0 < k < d (extreme values of k are trivial). Consider which concepts
in C get representatives of size ≤ k. They are all the concepts in 0Cx that
got representatives of size ≤ k in the mapping for Cx plus all the concepts in
1Cx that got representatives of size ≤ k − 1 (as 1Cx representatives have size
+1 compared to the 0Cx representatives). Thus, our class Ck is formed in the
following manner - Ck = 0Cx

k ∪ 1Cx
k−1. By inductive assumption Cx

k and Cx
k−1

are maximum classes with VC dimension k and k − 1. Furthermore, definition
of Ck implies that Cx

k−1 ⊂ Cx
k .

|Ck| = |0Cx
k |+ |1Cx

k−1| =
(
n−1
≤k

)
+

(
n−1
≤k−1

)
=

(
n
≤k

)
. Thus Ck has the right size

and V Cdim(Ck) ≥ k. It remains to show that Ck does not shatter any set of
size k +1. Consider all sets of dimensions of size k +1 that does not involve x. It
would have to be shattered by Ck − x = Cx

k ∪ Cx
k−1 = Cx

k , which is impossible.
Now consider sets of size k + 1 that do involve x. All the 1 values for the x
coordinate happen in the 1Cx

k−1 part of Ck. Thus removing the x coordinate we
see that Cx

k−1 would have to shatter a set of size k, which is again impossible. ut

It was known previously that the one-inclusion graph for maximum classes is
connected ([Gur97]). We are able to extend that statement to a stronger one in

13

Lemma 8. Furthermore, this lemma is a known property of simple linear arrange-
ments, which are restricted maximum classes (i.e. not all maximum classes can
be represented as a simple linear arrangement [Flo89]). But first a necessary
technical lemma is proven.7

Lemma 7. For any maximum class C and x ∈ dom(C), restricting wrt x
does not change the incident dimension sets of concepts in tailx(C), i.e. ∀c ∈
tailx(C), IC(c) = IC−x(c− x)

Lemma 8. In the one-inclusion graph for a maximum concept class C, the
length of the shortest path between any two concepts is equal to their Hamming
distance.

Proof. From Lemma 7 it follows that there are no edges between any concepts
in tailx=0(C)− x and concepts in tailx=1(C)− x.

The proof will proceed by induction on |dom(C)|. The lemma trivially holds
when |dom(C)| = 0 (i.e. C = ∅). Let c, c′ be any two concepts in a maximum
class C of domain size n > 0 and let x ∈ dom(C). Since C − x is a maximum
concept class with a reduced domain size, there is a shortest path P between
c − x and c′ − x in C − x of length equal their Hamming distance. The class
C − x is partitioned into Cx and tailx(C) − x. If ĉ is the first concept of P in
Cx and ĉ′ the last, then by induction on the maximum class Cx (also of reduced
domain size) there is a shortest path between ĉ and ĉ′ that only uses concepts of
Cx. Thus we can assume that P begins and ends with a segment in tailx(C)−x
and has a segment of Cx concepts in the middle (Some of the three segments
may be empty).

Note that since there are no edges between concepts in tailx=0(C) − x and
tailx=1(C)− x, any segment of concepts in tailx(C)− x must be from the same
part of the tail. Also if the initial segment and final segment of P are both non-
empty and from different parts of the tail, then the middle Cx segment can’t be
empty.

We can now construct a shortest path P ′ between c and c′ from the path P .
When c(x) = c′(x) we can extend the concepts in P with x = c(x) to obtain
a path P ′ between c and c′ in C of the same length. Note that from the above
discussion all concepts of P from tailx(C) − x must be concepts that label x
with bit c(x).

If c(x) 6= c′(x), let P be as above. We first claim that P must contain a
concept c̃ in Cx, because if all concepts in P lied in tailx(C) then this would imply
an edge between a concept in tailx=0(C) − x and a concept in tailx=1(C) − x.
We now construct a new path P ′ in C as follows: Extend the concepts up to c̃
in P with x = c(x); then cross to the sibling concept c̃′ which disagrees with c̃
only on its x-dimension; finally extend the concepts in path P from c̃ onwards
with x = 1. ut
Acknowledgments: Thanks to Sally Floyd for personal encouragement and
brilliant insights and to Sanjoy DasGupta for discussions leading to Lemma 8.
7 Additional notation is as follows. IC(c) - is the set of incident dimensions, that is

set of labels for all edges of c in C. E(C) - set of all edges in a class.

14

Bibliography

[Flo89] S. Floyd. Space-bounded learning and the Vapnik-Chervonenkis Di-
mension (Ph.D). PhD thesis, U.C. Berkeley, December 1989. ICSI
Tech Report TR-89-061.

[FW95] S. Floyd and M. K. Warmuth. Sample compression, learnability, and
the Vapnik-Chervonenkis dimension. Machine Learning, 21(3):269–
304, 1995.

[Gur97] Leonid Gurvits. Linear algebraic proofs of VC-dimension based in-
equalities. In Shai Ben-David, editor, EuroCOLT ’97, Jerusalem,
Israel, March 1997, pages 238–250. Springer Verlag, March 1997.

[HLW94] D. Haussler, N. Littlestone, and M. K. Warmuth. Predicting {0, 1}
functions on randomly drawn points. Information and Computation,
115(2):284–293, 1994.

[Lan03] John Langford. Tutorial on practical prediction theory for classifi-
cation. ICML, 2003.

[LLS02] Y. Li, P. M. Long, and A. Srinivasan. The one-inclusion graph al-
gorithm is near optimal for the prediction model of learning. Trans-
action on Information Theory, 47(3):1257–1261, 2002.

[LW86] N. Littlestone and M. K. Warmuth. Relating data compres-
sion and learnability. Unpublished manuscript, obtainable at
http://www.cse.ucsc.edu/˜manfred/pubs/lrnk-olivier.pdf, June 10
1986.

[MST02] Mario Marchand and John Shawe-Taylor. The Set Covering Ma-
chine. Journal of Machine Learning Research, 3:723–746, 2002.

[Sau72] N. Sauer. On the density of families of sets. Journal of Combinatorial
Theory (A), 13:145–147, 1972.

[SMJST03] Marina Sokolova, Mario Marchand, Nathalie Japkowicz, and John
Shawe-Taylor. The Decision List Machine. In Advances in Neural In-
formation Processing Systems 15, pages 921–928. MIT-Press, Cam-
bridge, MA, USA, 2003.

[Vap82] V. N. Vapnik. Estimation of Dependences Based on Empirical Data.
Springer-Verlag, New York, 1982.

[VC71] V. N. Vapnik and A. Y. Chervonenkis. On the uniform convergence
of relative frequencies of events to their probabilities. Theory of
Probab. and its Applications, 16(2):264–280, 1971.

[vLBS04] Ulrike von Luxburg, Olivier Bousquet, and Bernard Schölkopf. A
compression approach to support vector model selection. Journal of
Machine Learning Research, 5(Apr):293–323, 2004.

[War03] M. K. Warmuth. Compressing to VC dimension many points. In
Proceedings of the 16th Annual Conference on Learning Theory
(COLT 03), Washington D.C., USA, August 2003. Springer. Open
problem.

[War04] M. K. Warmuth. The optimal PAC algorithm. In Proceedings of
the 17th Annual Conference on Learning Theory (COLT 04), Banff,
Canada, July 2004. Springer. Open problem.

[Wel87] E. Welzl. Complete range spaces. Unpublished notes, 1987.

16

