Discriminative Learning can Succeed
where Generative Learning Fails

Philip M. Long! and Rocco A. Servedio*?

! Google, Mountain View, CA, U.S.A.
plong@google.com
2 Columbia University, New York, NY, U.S.A.
rocco@cs.columbia.edu

Abstract. Generative algorithms for learning classifiers use training
data to separately estimate a probability model for each class. New items
are then classified by comparing their probabilities under these models.
In contrast, discriminative learning algorithms try to find classifiers that
perform well on all the training data.

We show that there is a learning problem that can be solved by a discrim-
inative learning algorithm, but not by any generative learning algorithm
(given minimal cryptographic assumptions). This statement is formalized
using a framework inspired by previous work of Goldberg [3].

1 Introduction

If objects and their classifications are generated randomly from a joint prob-
ability distribution, then the optimal way to predict the class y of an item z
to is maximize Prly|z]. Applying Bayes’ rule, this is equivalent to maximizing
Pr[z|y] Pr[y]. This motivates what has become known as the generative approach
to learning a classifier, in which the training data is used to learn Pr[-|y] and
Pr[y] for the different classes y, and the results are used to approximate the
behavior of the optimal predictor for the source (see [1, 5]).

In the discriminative approach, the learning algorithm simply tries to find
a classifier that performs well on the training data [12, 5, 9, 6]. Discriminative
algorithms can (and usually do) process examples from several classes together at
once, e.g. maximum margin algorithms use both positive and negative examples
together to find a large margin hypothesis separating the two classes.

The main result of this paper is a computational separation between genera-
tive and discriminative learning. We describe a learning problem and prove that
it has the following property: a discriminative algorithm can solve the problem
in polynomial time, but no generative learning algorithm can (assuming that
cryptographic one-way functions exist).

Our analysis demonstrates the possible cost of largely processing the exam-
ples from different classes separately, as generative methods do. Goldberg [3]

* Supported in part by NSF award CCF-0347282, by NSF award CCF-0523664, and
by a Sloan Foundation Fellowship.

was the first to study the effect of this limitation. His analyses concerned a
modification of the PAC model in which

— the examples belonging to each class are analyzed separately,

— each analysis results in a scoring function for that class, and

— future class predictions are made by comparing the scores assigned by the
different scoring functions.

He designed algorithms that provably solve a number of concrete learning prob-
lems despite the constraint of processing examples from different classes sepa-
rately, and identified conditions that allow a discriminative PAC learner to be
modified to work in the generative setting. The main open question formulated
in [3] is whether there is a learning problem that can be solved by a discrimina-
tive algorithm but cannot be solved by a generative algorithm. We establish our
main result in a framework closely related to the one proposed in [3]. The main
difference between our formulation and Goldberg’s is that we define a learning
problem to be a collection of possible joint probability distributions over items
and their classifications, whereas Goldberg defined a learning problem to be a
concept class as in the PAC model.

Roughly, our proof works as follows. In the learning problem we consider the
domain is divided into three parts, and a separate function provides 100% accu-
racy on each part. The third part is really hard: its function is cryptographically
secure against any adversary (or learner) which does not “know” the “key” to
the function. On the other hand, the first two parts are easy, and descriptions of
their two functions can be combined to compute the key of the third function.

A discriminative algorithm can succeed by learning the first two parts and
using the results to obtain the key to the third function. On the other hand,
each of the first two parts is hard to learn from one kind of example: one part is
hard to learn from positive examples only, and the other is hard to learn from
negative examples only. Thus in the generative learning framework, the scoring
function obtained using positive examples only contains no information about
the subfunction which is hard to learn from positive examples, and thus in and of
itself this positive scoring function contains no useful information about the key
for the third function. An analogous statement is true for the negative scoring
function. The tricky part of the analysis is to show that the overall predictor
used by the generative algorithm — which incorporates information from both
the positive and negative scoring functions — is similarly useless on the third
part. Intuitively this is the case because the two scoring functions are combined
in a very restricted way (simply by comparing the values that they output), and
this makes it impossible for the final classifier to fully exploit the information
contained in the two scoring functions.

Related work. Aside from Goldberg’s paper, the most closely related work
of which we are aware is due to Ng and Jordan [8]. They showed that Naive Bayes,
a generative algorithm, can converge to the large-sample limit of its accuracy
much more quickly than a corresponding discriminative method. For generative
algorithms that work by performing maximum likelihood over restricted classes
of models, they also showed, given minimal assumptions, that the large-sample

limit of their accuracy is no better than a corresponding discriminative method.
Note that these results compare a particular generative algorithm with a partic-
ular discriminative algorithm. In contrast, the analysis in this paper exposes a
fundamental limitation faced by any generative learning algorithm, due to the
fact that it processes the two classes separately.

Section 2 contains preliminaries including a detailed description and motiva-
tion of the learning model. In Section 3 we give our construction of a learning
problem that separates the two models and give a high-level idea of the proof.
Sections 4 and 5 give the proof of the separation.

Due to space constraints some proofs are omitted; see [7] for these proofs.

2 Definitions and main result

Given a domain X, we say that a source is a probability distribution P over
X x {-1,1}, and a learning problem P is a set of sources. Throughout this
paper the domain X will be {0,1}" x {1,2,3}.

2.1 Discriminative learning

The discriminative learning framework that we analyze is the Probably Ap-
prozimately Bayes (PAB) [2] variant of the PAC [11] learning model. In the
PAB model, in a learning problem P a learning algorithm is given a set of
m labeled examples drawn from an unknown source P € P. The goal is to
output a hypothesis function h : X — {—1,1} which with probability 1 — ¢
satisfies Pr(, ,)epl[h(z) # y] < Bayes(P) + €, where Bayes(P) is the least er-
ror rate that can be achieved on P, i.e. the minimum, over all functions h, of
Pr(;y)ep[h(2) # y]. In a setting (such as ours) where the domain X is parame-
terized by n, an efficient learning algorithm for P is one that uses poly(n, %, %)
1,3) time, and outputs a hypothesis that can
be evaluated on any point in poly(n, 1, 1) time.

many examples, runs in poly(n,

2.2 Generative learning

Goldberg [3] defined a restricted “generative” variant of PAC learning. Qur anal-
ysis will concern a natural extension of his ideas to the PAB model.

Roughly speaking, in the generative model studied in this paper, the algo-
rithm first uses only positive examples to construct a “positive scoring function”
h+ : X — R that assigns a “positiveness” score to each example in the input
domain. Tt then uses only negative examples to construct (using the same algo-
rithm) a “negative scoring function” h_ : X — R that assigns a “negativeness”
score to each example. The classifier output by the algorithm is the following:
given example z, output 1 or —1 according to whether or not hy (z) > h_(z).

We now give a precise description of our learning framework. In our model

— A sample S = (z1,Y1),---o(Tm, Ym) is drawn from the unknown source P;
— An algorithm A is given a filtered version of S in which

e examples (z,y;) for which y; = 1 are replaced with x¢, and

e examples (z¢,y;) for which y; = —1 are replaced with ¢

and A outputs h; : X — R.
— Next, the same algorithm A is given a filtered version of S in which
e examples (z¢,y;) for which y; = 1 are replaced with o, and
e examples (z,y;) for which y; = —1 are replaced with x;
and A outputs h_ : X — R.
— Finally, let h : X — {—1,1} be defined as h(z) = sgn(hy(z) — h_(z)). If
hy(z) = h_(z) then we view h(z) as outputing L (undefined).

Algorithm A is said to be a generative PAB learning algorithm for P if for
al PeP,forall 0 <e< %, 0 < § < 1, the hypothesis h obtained as above,
with probability at least 1— 4, satisfies Pr(, ,)ep[h(7) # y] < Bayes(P) + €. The
notions of runtime and efficiency are the same as in the standard PAB framework.
It is easy to see that any learning problem that can be efficiently PAB learned
in the generative framework we have described can also be efficiently learned in
the standard PAB framework.

2.3 Main result

With these definitions in place we can state our main result:

Theorem 1. If one-way functions exist, there is a learning problem that is ef-
ficiently learnable in the PAB model, but not in the generative PAB model.

2.4 Two unsupervised learners are not better than one

Using different algorithms for the positive and negative examples cannot help a
generative learning algorithm much; this can be formalized using an idea due to
Goldberg [3]. This leads to the following extension of Theorem 1 (see Section 6
of [7] for a proof of this extension):

Theorem 2. Suppose the generative PAB learning model is relazed so that sep-
arate algorithms can be applied to the positive and negative examples. Then it
remains true that if one-way functions exist, then there is a learning problem
that can be solved in polynomial time in the standard PAB model, but not in the
generative PAB model.

3 The construction and the main idea

Our construction uses pseudorandom functions; defined by Goldreich et al. in
1986 [4], these are central objects in modern cryptography.

Definition 1. A pseudorandom function family (PRFF) is a collection of func-
tions {f, : {0, 1}lsl — {1, —1}}seqo,13+ with the following two properties:

1. (efficient evaluation) there is a deterministic algorithm which, given an n-bit
seed s and an n-bit input x, runs in time poly(n) and outputs fs(x);

2. (pseudorandomness) for all constants ¢ > 0, all probabilistic polynomial-time
(p.p-t.) oracle algorithms A, and all sufficiently large n, we have that

Pr [AF(1") outputs 1]— Pr [Af (1) outputs 1]| < 1/n°.
| o [A7(") outputs 1] = _Pr [A%(1") outputs 1] < 1/n

»

Here “ Prper, ” indicates that F is a truly random function chosen uni-
formly from the set of all 22 Boolean functions mapping {0,1}" to {—1,1},
and “Pryeso,13» 7 indicates that s is chosen uniformly from {0,1}".

The notation “A9(1™)” indicates that A is run with black-box oracle access to
g on a vacuous input of length n (so since A is a polynomial-time algorithm, it
runs for at most poly(n) time steps). Intuitively, the pseudorandomess property
ensures that in any probabilistic poly(n)-time computation which is executed
with oracle access to a truly random function, a randomly chosen pseudorandom
function may be used instead without affecting the outcome of the computation
in a noticeable way. Well known results [4, 10] imply that pseudorandom function
families exist if and only if any one-way function exists.

3.1 The construction

We first define a class C' of Boolean functions in which each function is specified
by a triple (r,s,b) where r,s € {—1,0,1}" and b € {-1,1}. We will use the
functions in C' to define the set of sources which constitute our learning problem.

A function ¢, 5, € C takes two inputs: an n-bit string z € {0,1}" and an
index i € {1,2,3}. We refer to examples of the form (z,7) as type-i examples for
i =1,2,3. The value of ¢, 5 (z,7) is defined as follows:

AND,(z) ifi=1 OR,(z) ifi=1
¢rs1(2,1) = ¢ ORg(x) ifi=2 Crs,—1(%,4) = § ANDy(z) ifi=2

friels) (@) ifi=3, fire)s)(z) i i=3.
Here AN D, is the conjunction of literals over x1,...,z, that is indexed by r;

for instance if n = 3 and r = (r1,72,73) = (1,0, —1) then AND,(z) is z; A T3.
OR; is similarly the disjunction that is indexed by s. The notation “|r|” denotes
the n-bit string (|r1],...,|rn|) € {0,1}", and the bitwise XOR y & z of two n-
bit strings y,z € {0,1}" is the n-bit string (y1 ® 21,.-..,Yn ® 2,). The family
{ft}tcfo,1)» is a PRFF as described at the start of Section 3 above.

Now we describe the learning problem P that we use to prove our main result.
Each source P in P is realizable, i.e. there is a function mapping X to {-1,1}
with 100% accuracy (so the Bayes optimal error is 0). Specifically, for each
crs,6 € C, there is a source P, ,; which is a distribution over labelled examples
((%,1), cr,5,5(x,7)). Thus to describe P, it suffices to describe the marginal
distributions over the domain X = {0,1}" x {1,2,3} of inputs to ¢, s; i-e. we
need to describe the distribution over positive examples, and the distribution
over negative examples. These marginal distributions are as follows: for each
i = 1,2,3 the distribution allocates 1/3 of the total probability mass to type-i

examples. For each ¢ = 1,2, 3, half of this 1/3 mass is distributed uniformly over
the positive type-i examples, and half over the negative type-i examples.

Note that the above description assumes that there are indeed both positive
and negative examples of type i. If for some ¢ all type-i examples have the same
label, then the entire 1/3 probability mass for type-i examples is uniformly
distributed over all 2™ examples (z,%). Note that AND, always has at least
one positive example and OR; always has at least one negative example, and
consequently each source in P has at least 1/6 probability weight on each label.
Note also that it is possible that for a given t € {0,1}", the member f; of the
pseudo-random function family used on the type-3 examples could be identically
1 or identically —1. However, the pseudorandomness of {f;} ensures that for any
¢ > 0, for large enough n, at least a 1 — # fraction of functions in {fi}¢cf0,13n
have a fraction of positive (negative) examples which is bounded in [% — #, % +
#] (Otherwise, by drawing poly(n) many random examples and estimating the
fraction of positive examples using this sample, a poly(n)-time algorithm would
be able to distinguish a random function from {f;};c¢0,1}~ from a truly random
function with nonnegligible advantage over random guessing.)

3.2 The idea

In this section we sketch the high-level idea of why discriminative algorithms
can efficiently solve this learning problem while generative algorithms cannot.
Discriminative learners can succeed: Let P, ;; be any element of P. A
simple argument which we sketch in Section 4 shows that a discriminative learner
can use the labelled type-1 examples (type-2 respectively) to efficiently exactly
identify r (s, respectively). It can guess and check the value of b, and thus can
w.h.p. exactly identify the unknown source in poly(n) time.
Generative learners cannot succeed: We show that no generative algorithm
can construct a hypothesis that w.h.p. has high accuracy on type-3 examples.
More precisely, we define a particular probability distribution D over the
sources in P and show that for a source selected from this distribution, no
poly(n)-time generative learning algorithm can w.h.p. output a hypothesis h
whose accuracy on type-3 examples is bounded away from 1/2. This means that
the overall accuracy of such a learner cannot be substantially greater than 5/6.
The distribution D is as follows: to draw a source P, 5 from D,

— Toss a fair coin and set b to £1 accordingly;

— Select r and s by drawing each one from the following distribution TARGET
over {—1,0,1}": a string = drawn from TARGET has each z; independently
set to be —1, 0 or 1 with probabilities 1/4, 1/2 and 1/4 respectively.

Note that under D the strings |r| and |s| are independently and uniformly
distributed over {0,1}". This will be useful later since it means that even if one
of the strings r, s is given, the seed |r| @ |s| to the pseudorandom function f|,|g|s|
is uniformly distributed over {0,1}" as required by Definition 1.

Let P, be a source drawn from D. Let us suppose for now that b = 1, and
let us consider the execution of A when it is run using a sample in which only

positive examples drawn from P, ;; (i.e. positive examples of the concept ¢ 5.1)
are uncovered. Recall that under the conditions of the generative model that we
consider, the algorithm A does not “know” that it is being run using positive
versus negative examples; it only receives a set of unlabelled examples.

(Throughout the following informal discussion we assume that both r # 0"
and s # 0"; note that the probability that either of these strings is 0™ is at
most 2/2". We further assume that f,|g|s is not identically 1 or identically —1;
recall from the discussion at the end of Section 3.1 that this fails to hold with
probability 1/n“(). Under these assumptions a random example from P, , ; has
a 1/6 chance of being a positive/negative type-1/2/3 example.)

The examples that A receives will be distributed as follows:

— Type-1 examples (z,1): By our assumptions, 1/3 of the uncovered exam-
ples that A receives will be type-1 examples; these examples are uniformly
distributed over all z € {0,1}" that satisfy AND,(z). As we will see in
Section 4, it is easy for A to completely identify r using these examples.

— Type-2 examples (z,2): By our assumptions, 1/3 of the uncovered ex-
amples A receives will be type-2 examples, each of which has x uniformly
distributed over all strings that satisfy OR,. As we will show in Section 5,
for any r € {—1,0,1}" the distribution of these type-2 examples (taken over
the random choice of s from TARGET and the random draw of the examples
from P, 1) is statistically indistinguishable from the uniform distribution
over {0,1}" to any algorithm (such as A) that receives only poly(n) many
draws. Thus, as far as A can tell, the type-2 examples it receives are indepen-
dently and uniformly drawn from {0, 1}"; intuitively we view this as meaning
that A gets no useful information about s from the type-2 examples, so we
informally view |s| as uniform random and unknown to A.

— Type-3 examples (z, 3): By our assumptions, 1/3 of the uncovered exam-
ples A receives will be type-3 examples. Intuitively, since |s| is uniform ran-
dom and unknown to A, even though r is known to A, the seed ¢t = |r|®|s| to
the pseudorandom function is uniform random and unknown to A. It follows
from the definition of pseudorandomness that the function f; is indistin-
guishable to algorithm A from a truly random function, so type-3 examples
give no useful information to A; as far as A can tell, the type-3 examples it
receives are simply uniform random strings drawn from {0,1}".

Thus we may informally view the hypothesis that A constructs, when run on
positive examples drawn from P, ;; where r and s were drawn from TARGET,
as being determined only by the information “(r,1)” (meaning that r is the
string that governs the distribution of type-1 examples in the sample used for
learning); the type-2 and type-3 examples that A receives are indistinguishable
from uniform random strings. (The indistinguishability is statistical for the
type-2 examples and computational for the type-3 examples; see Proposition 1
and Lemma 1 respectively of Section 5, where we make these arguments precise.)
We thus write h, 1 to denote the hypothesis that A constructs in this case.

An analogous argument shows that we may view the hypothesis that A con-
structs when run on negative examples drawn from ¢, ;1 as being determined

only by the information “(s,2)” (meaning that s is the string that governs the
distribution of type-2 examples in the sample); in this case the type-1 and type-
3 examples in the sample are indistinguishable from truly random strings. We
write hy 2 to denote the hypothesis that A constructs in this case.

Now let us consider a setting in which the target sourceis P_, _; _; (where for
z € {-1,0,1}", the string —z is simply (—z1,...,—2,)) and 7, s (or equivalently
—r,—s) are independently drawn from TARGET. This time we will consider the
execution of A when it is run using a sample in which only negative examples
from P_, 5 1 are uncovered, with the same assumptions on r,s and f,q, as
above. The examples that A receives will be distributed as follows:

— Type-1 examples (z,1): By definition of P_, _; _;, 1/3 of the uncovered
examples that A receives will be type-1 examples. These examples are uni-
formly distributed over all z € {0,1}" that do not satisfy OR_,(x), i.e. over
all z that satisfy AN D,.. Thus the negative type-1 examples in this case are
distributed identically to the positive type-1 examples for P, ;1.

— Type-2 examples (x,2): 1/3 of the uncovered examples A receives will be
type-2 examples, each of which has z uniformly distributed over all strings
that do not satisfy AND_,, i.e over all strings that satisfy ORs. Thus the
negative type-2 examples for P_,_, _; are distributed identically to the
positive type-2 examples for P, ;1 (and as in that case, algorithm A gets no
useful information about s from the type-2 examples, so we may view s as
uniform random and unknown to A).

— Type-3 examples (z,3): The seed | —r|®|—s| € {0,1}™ is identical to the
seed t = |r| @ |s| that arose from P, ;1 above. As above, since s is uniform
random and unknown to A, the function f; is indistinguishable from a truly
random function to A.

Thus we have arrived at the following crucial observation: A cannot distin-
guish between when it is run on positive examples from P, ;1 versus negative
examples from P_, _, _1. (The two distributions differ only in the type-3 exam-
ples, where in the negative c_, _, _1 case they are uniform over f;(—1) and in
the positive ¢, 5,_1 case they are uniform over f;(1). By the pseudorandomness
of f; these distributions are indistinguishable from each other, since they are
each indistinguishable from the uniform distribution over {0,1}".) So we may
informally view the hypothesis that A constructs as being h, 1 in both cases.

Likewise, whether A is run on negative examples from P, or positive ex-
amples from P_, _; _;, the resulting hypothesis is hy 2 in both cases.

Now suppose that A is a successful generative learning algorithm in the PAB
sense, i.e. the final hypothesis obtained from source P, 51 (which we denote
hyr 5,1, and which equals sgn(h,1(z, i) — hs2(2,4))) has very high accuracy. Since
the overall error rate of h, 51 is at least 1/3 of its error rate on type-3 exam-
ples, this means that A, (z,3) must be well-correlated with f, g (z). On
the other hand, as argued above, the final hypothesis h_, _; _; obtained from
source P_, _s _1 is sgn(hs 2(x,9) — hy1(2,4)), and this must have high accuracy
on type-3 examples from this source; so h_, _s._1(,3) is well-correlated with

Ji—r|@|—s+|(z). But this is impossible because f|_,q|_s is identical to fgs
whereas h_, _; 1(z,3) is easily seen to be the negation of h, ;1 (z,3)

This concludes our informal presentation of why learning problem P is hard
for any generative learning algorithm. In Section 5 we give a precise crypto-
graphic instantiation of the above intuitive argument to prove that generative
algorithms cannot succeed.

4 Discriminative Algorithms can Succeed

Theorem 3. There is a polynomial-time discriminative learning algorithm that
can solve learning problem P.

Proof Sketch. We use Valiant’s algorithm [11], which keeps all literals that are
not eliminated as possibilities by the training data, to learn r and s. The prob-
ability that any incorrect literal is not eliminated by ¢ examples is at most
2n(1/2)%. So r and s can be learned exactly; it is easy to “guess and check” b,
and thus learn the target ¢, s exactly. (See [7] for a full proof.) |

5 Generative Algorithms must Fail

We prove the following theorem, which shows that no generative learning algo-
rithm can succeed on learning problem P.

Theorem 4. Let A be any poly(n)-time algorithm that operates in the generative
learning framework and has the following property: when run on examples from
any source in P, with probability at least 1 —1/n A outputs a final hypothesis h
whose error rate is at most €. Then € > ¢ — o(1).

Let us set up the framework. Let A be any poly(n) time generative algorithm.
We can view A as a mapping from (filtered) samples to hypotheses. Given a
sample S we write A(S) to denote the hypothesis that A outputs on S, and we
write A(S)(z) to denote the real-valued output of this hypothesis on z.

5.1 Positive examples from P,

Fix any r € {—1,0,1}". Consider a source P, ; ; where s is drawn from TARGET.
We first show that for any generative algorithm A that takes as input a sample
of m = poly(n) many examples from such a source with only the positive exam-
ples exposed, the type-2 examples in its sample are statistically indistinguishable
from uniform random examples over {0,1}".

To make this precise, we need the following definitions.

Definition 2. If P is a source, define Py to be the probability distribution over
X U {o} obtained by (i) choosing (x,y) according to P, and (i) emitting x if
y =1 and emitting o if y = —1. Define P_ analogously with the labels reversed.

Definition 3. Let D;'fl be the distribution over sets Sy of m examples from
({0,1}" x {1,2,3}) U{o} which is defined as follows: to draw a set S from D}
(i) first draw s from TARGET, and (i) then draw each of the m examples in
Sy independently from (Prs1)+.

Definition 4. Let 5;‘:1 be the distribution over sets §+ of m examples from
(0,1} x {1,2,3}) U {o} defined as follows: to draw a set S, from 1~)r+’1, (i)
first draw s and S; as described above from D;'fl, and (i) then replace each

type-2 example (x,2) in Sy with a new example (z,2) where each time z is an
independent and uniform string in {0,1}™.

A fairly direct calculation establishes the following (see [7] for full proof):

Proposition 1. For large enough n, for any r € {—1,0,1}", the distributions
D:1 and D;f:l have statistical distance at most 27 "/8.

Thus the distributions D;r’l and 5:1 are statistically indistinguishable. We
now recall the notion of computational indistinguishability of two distributions:

Definition 5. Let p(n) be a fized polynomial and let {X,}n>1 and {Y,}n>1 be
two families where for each n, both X,, and Y, are distributions over {0,1}P(™),
{Xn}n>1 and {Yn}n>1 are said to be computationally indistinguishable if for
all constants ¢ > 0, all p.p.t. algorithms A, and all sufficiently large n, we have

|SX1:;1"Xn[A(SX) =1] - SyPerYn[A(SY) =1]| <1/n".

Intuitively, two distributions are computationally indistinguishable (henceforth
abbreviated c.i.) if no probabilistic polynomial-time algorithm can distinguish
whether a random draw comes from one of the distributions or the other with
nonnegligible advantage over a random guess. We will use the following facts:

— Computational indistinguishability is transitive: if X,, and Y,, are c.i., and
Y, and Z, are c.i., then X,, and Z,, are c.i..

— If X,, and Y,, are c.i., and Y,, and Z,, have statistical distance ||Y,, — Z,||1 =
1/n“®) | then X, and Z, are c.i..

We now show that for any generative algorithm A that takes as input a
sample of m = poly(n) many positive examples from P, ;; (where 0" # r is any
fixed string and s is drawn from TARGET), the type-2 and type-3 examples in
its sample are computationally indistinguishable from uniform random examples
over {0,1}™. That is, positive examples for OR; cannot be reliably distinguished
from uniform draws from {0,1}" in polynomial time, and neither can uniform
random elements of fl;\IGBISI(l)'

Definition 6. Let ﬁj@ be the distribution over sets §+ of m examples from
{0,1}™ x {1,2,3} which is defined as follows: to draw a set §+ from IA):I, (i)
first draw s and Sy as described above from D;L’l, and (i) for i = 2,3 replace
each type-i example (x,i) in Sy with an example (z,i) where each time z is an
independent and uniform random string from {0,1}".

Lemma 1. For any 0™ # r € {—1,0,1}", the two distributions D;':l and ﬁj‘l
are computationally indistinguishable.?

3 The lemma also holds for r = 0", but this result suffices and has a simpler proof.

Proof. Suppose to the contrary that D}, and ﬁtl are not computationally
indistinguishable. Let Z be a p.p.t. algorithm which is such that

| Pr_[Z(Sy)=1]-_Pr [Z(S))=1]>1/n° (1)
S+eDy S+€D;t1

for some ¢ > 0 and infinitely many n. We show how such a Z can be used to
obtain a distinguishing algorithm that “breaks” the PRFF, and thus obtain a
contradiction.

Consider the following algorithm Z', which uses Z as a subroutine and ac-
cesses f as an oracle: Given black-box access to a function f: {0,1}" — {0,1},
construct an m-element sample S by performing the following m times:

— Toss a fair coin; if “heads,” output ¢. If “tails:”

(*) Choose a uniform random index i € {1,2,3}. If i = 1, output “(z,1)”
where z is a uniformly chosen input that satisfies AND,. (i.e. (z,1) is a
random type-1 example). If 4 = 2, output “(x,2)” where z is a uniform
random n-bit string. If ¢ = 3, give random n-bit inputs to f until one is
obtained (call it z) for which f(z) = 1; output “(x,3).” If more than n
random n-bit inputs are tried without finding one which has f(z) =1,
abort the procedure (an arbitrary sample that is fixed ahead of time may
be output in this case, say for example m copies of (07,1)).

Now run Z on S and output whatever it outputs. R

Recall that our plan is to show that Z, which can tell apart D, from D},
can be used to tell a pseudo-random function from a truly random function.
Roughly speaking, our first proposition says that D:fl is a faithful proxy for the
result of applying a truly random function:

Proposition 2. Suppose f is a truly random function. Let Diryerand denote the
distribution over samples S that results from performing (*) above m = poly(n)

times with f. Then the statistical distance between Dyryerang and D::l 18 ﬁ

Proof Sketch for Proposition 2 (see [7] for full proof): We first show that
wlog we can assume that (*) above does not abort, that s (chosen in the definition
of ﬁ;‘fl) is not 0", and that f|, g, takes both positive and negative values.
Given these assumptions, the uniform random choice of an index ¢ € {1,2, 3}
in the executions of (*) under Dyryerang faithfully simulates what is going on
in ﬁ;fl It can be shown that we thus have that the distribution of type-1 and

type-2 examples under the two distributions Dy,yerang and 13;'“1 are identical.

We now analyze the distribution of type-3 examples. Under 13;1, each draw
is with probability 1/3 a type-3 example (x,3) where z is uniform over {0,1}".
Under Dipyerand, €ach draw is with probability 1/3 a type-3 example (z, 3) where
x is drawn uniformly from f~!(1), where f is a truly random function (chosen
once and for all before the m draws are made). Thus, for any m' < m the
probability of receiving exactly m' type-3 examples is the same under each of
the two distributions. An easy Chernoff bound shows that with probability at

least 1— 5%, the fraction of positive examples for a truly random f is 1 +1/29(),
Thus, with high probability, a truly random f has f~!(1) uniformly distributed
over an exponentially large set. This implies that a polynomial-size sample is
exponentially unlikely to have any repetitions among the positive examples of
f. Symmetry implies that, conditioned on a fixed values of the number m' of
positive type-3 examples, and conditioned on the event that they are distinct,
any set of m' examples are equally likely to be chosen. This is of course also the
case if we draw m' examples uniformly from {0,1}". This establishes that the
contribution to the statistical distance between ﬁjl and Dyryerang from type-3

examples is at most 1/2(") and establishes the proposition. (Proposition 2)l

Our next proposition shows that D,Jf,l is a faithful proxy for the result of
using a pseudo-random function.

Proposition 3. Suppose [is a pseudorandom function, i.e. f = f; where t
is drawn uniformly from {0,1}". Let Dpseudorand denote the distribution over
samples S in which the positive examples are obtained using (*) with this choice
of f. Then the statistical distance between Dyseudoranda and 13:1 is at most —y.
Proof Sketch for Proposition 3 (see [7] for full proof): As in the case of
Proposition 2, we have that with probability 1 — 1/n“(") both (i) the string s
chosen in the definition of 15:1 is not 0™ and (ii) the seed |r| @ |s| is such that
fir|@|s| assumes both + and — values, so we may assume that (i) and (ii) hold.

As in the earlier proof, since r # 0™ this implies that each positive exam-
ple from D;L,l has probability 1/3 of being a type-1, type-2, or type-3 example,
and the same is true for each example from Dpseydorand. Given this, the distri-
bution of type-1 examples is easily seen to be the same under IND:fl and under
Dpseudorand, and the same is true for the distribution of type-2 examples. The
distribution of type-3 examples under Dpgeydorand is that each is chosen uni-
formly at random from f; (1) where ¢ is uniform random over {0, 1}", whereas
the distribution of type-3 examples under IND:I is that each is chosen uniformly

at random from f; (1) where ¢ = |r| @ |s|; this string is uniform random condi-
tioned on the event that (i) and (ii) both hold. Since the probability that either
(i) or (ii) fails to hold is 1/n“(), the proposition follows. (Proposition 3)H

Propositions 3 and 1 together yield that Dpscudorand has statistical distance
1/n¢® from Djf,. Combining this with Proposition 2 and Equation (1), we have
that the p.p.t. algorithm Z' satisfies

| Pr [(Z")/*(1") outputs 1] — (Z")F (1) outputs 1]| > 1/n° .

Pr |
se{0,1}n FERR

for infinitely many n, where ¢’ is any constant larger than c. But this violates
the fact that {f;} is a PRFF. This proves Lemma 1. |
5.2 Negative examples from P_, _,

We now give results for negative examples from P_, _, _; that are dual to the
results we gave for positive examples from P, s in the last section. This will let

us show (Corollary 1 below) that positive examples drawn from P, ; are com-
putationally indistinguishable from negative examples drawn from P_, _, ;.
Fix any r € {-1,0,1}". We now consider a source P_, _, 1 where s (or
equivalently —s) is drawn from TARGET. In analogy with Definitions 3 and 4, let
D, _, be the distribution over sets S of m examples from ({0,1}" x{1,2,3})U
{o} which is defined as follows: to draw a set S_ from D_, _;, (i) first draw s
from TARGET, and (11) then draw each of the m examples in S_ independently
from (P_, _51)_. Let D , be the distribution over sets §_ of m examples
from {0,1}" x {1,2,3} whlch is defined as follows: to draw a set S_ from DT 1
(i) first draw s and S_ as described above from D_, _,, and (ii) for i = 2,3
replace each type-i example (z,%) in S_ with a fresh uniform example (z,1).
Dual arguments to those in Section 5.1 give the following Lemma 1 analogue:

Lemma 2. For any 0" # r € {-1,0,1}", the distributions D_, _, and D=

—-r,—1
are computationally mdzstmguzshable
The following proposition relates D:fl and DZ, _, (see [7] for proof):
Proposition 4. For any 0 # r € {—1,0,1}", the distributions Dt o1 and D_T 1

have statistical distance at most 1 /n“’(l).
Lemma 1, Lemma 2 and Proposition 4 together give:

Corollary 1. For any 0 # r € {—1,0,1}", the distributions D;’:l and DZ, _,
are computationally indistinguishable.

5.3 Negative examples from P, ; ; & positive examples from P, _,

Dual arguments to those of Sections 5.1 and 5.2 can be used to show that neg-
ative examples from P, ,, and positive examples from P_, _, _; are c.i.. More
precisely, fix any s € {—1,0,1}. Similar to Definitions 3 and 4, let D, be the
distribution over sets S_ of m examples from ({0,1}" x {1,2 3}) U {o} which is
defined as follows: to draw a set S_ from Dy, (i) first draw r from TARGET, and
(ii) then draw each of the m examples in $_ independently from (PT,SJ)_. Let
ﬁs_l be the distribution over sets §_ of m examples from ({0,1}"x{1,2,3})U{o}
which is defined as follows: to draw S_ from DS 1, (i) first draw r and S_ as

described above from D, and (ii) for i = 1, 3 replace each type-i example (z, 1)
in S_ with a new uniform example (z,4). Dual arguments to Section 5.1 give:

Lemma 3. For any 0" # s € {—1,0,1}", the two distributions D, and ﬁ;l
are computationally indistinguishable.

Fix any s € {—1,0,1}. Let DT, | be the distribution over sets S of m
examples from ({0, 1}" x {1,2,3}) U {o} which is defined as follows: to draw a
set Sy from D, . (i) first draw r from TARGET, and (i) then draw each

of the m examples in S} independently from (P_, _s _1)4. Let ﬁf&_l be the
distribution over sets Sy of m examples from ({0,1}" x {1,2,3}) U {0} which

is defined as follows: to draw a set §+ from ﬁts,—l? (i) first draw r and S as
described above from DJ_F&_I, and (ii) for 4 = 1,3 replace each type-i example
(z,4) in Sy with a fresh uniform example (z,%). As before, we have the following;:
Lemma 4. For any 0™ # s € {—1,0,1}", the two distributions Dfs,_l and

~

Dng,_1 are computationally indistinguishable.

Proposition 5. For any 0" # s € {—1,0,1}", the distributions ﬁ;l and ﬁfs,A
have statistical distance at most 1/n*().

Corollary 2. For any 0™ # s € {—1,0,1}", the distributions D, and Dfsﬁl
are computationally indistinguishable.

5.4 Proof of Theorem 4

As in the theorem statement, let A be any poly(n)-time purported generative
learning algorithm which, when run on examples from any source P € P, outputs
a final hypothesis h whose error rate on P is at most € with probability at least
1 — & where § = 1/n. We will show that € > & — o(1).

Algorithm B will make use of oracle access to distributions Dy and Dz over
m examples from ({0,1}™ x {1,2,3}) U {¢}, and will output a bit. Here it is:

— Draw r, s independently from TARGET. Let t = |r| & |s|.

Draw Sy from Dy and Sz from Dy.

Apply A to Sy to get hy, and to Sz to get hz, with parameters e = 6 = 1/n.
Pick a uniform z € {0,1}" and output the value fi(z) - sgn(hy(z,3) —
hZ (.’L’, 3)) .

hy and hz will be functions for scoring elements for positivity or negativity.
By applying B with different sources, each function will adopt each role. This
will let us conclude that the final accuracy on type-3 examples must be low.

1. Suppose first that Dy is ((Prs,1)+)™ and Dz is ((Prs,1)-)™. Then with
probability at least 1 —§ — 3e — 1/n, the output of B must be 1. (To see this,
recall that by assumption, for any r,s € {—1,0,1}" the final hypothesis A
produces should be e-accurate with probability 1 — §. Also, as noted in Sec-
tion 3.1, for 7, s drawn from TARGET with probability at least (say) 1—1/n?
we have that both 0" # r,s and f|,|g5 has a fraction of positive examples
which is bounded by [% - 711—2, % + #], and consequently each type-3 example
(z,3) has total probability weight in [3(1 — J5), (5 + =z)]. Consequently if
A’s final hypothesis has overall error rate at most € under P, s over all of
{0,1}™ x {1,2,3}, then its error rate on uniformly chosen type-3 examples
must certainly be at most 3¢ + 1/n.) Let p; denote the probability that B
outputs 1 in this case.

2. Now, suppose that Dy is the distribution ((P_,,_s,—1)—)™ and, as in case 1
above, D is ((Pr,5,1)—)™. Let p2 denote the probability that B outputs 1 in
this case. By Corollary 1, we know that for every fixed 0™ # r € {-1,0,1}",
the distributions Dj’l (where s is drawn from TARGET) and D_, _; (where

s is again drawn from TARGET) are computationally indistinguishable.
It follows that the distributions ((P_,_s,—1)—)™ (where both r and s are
drawn from TARGET) and ((P,s1)+)™ (where both r and s are drawn
from TARGET) are computationally indistinguishable. This gives us that
|p1 — p2| < 1/n¥M), for otherwise B would be a polynomial-time algorithm
that violates the computational indistinguishability of these distributions.

3. Now suppose that, as in Case 2, Dy is the distribution ((P_,_5_1)-)™,
and that Dz is ((P_r—s,—1)+)™. Let ps denote the probability that B
outputs 1 in this case. As argued in case (2) above, Corollary 2 gives us
that ((Pr,s,1)-)™ and ((P-,—s,—1)+)™ are computationally indistinguish-
able, where in both cases r, s are drawn from TARGET. This gives us that
lp2 — ps| < 1/nv®.

Putting together the pieces, we have that ps > p; — ﬁ >1—-§—3—
1 — — = 1—0(1) — 3¢ (since § = 1/n). But under the assumption that A
is a successful generative algorithm for P, it must be the case in case (3) that
p3 < 0+ 3¢+ 0o(1) = 3¢ + o(1). This is because in case (3) the hypothesis hy
is the negative example hypothesis and hz is the positive example hypothesis,
so the generative algorithm’s final hypothesis on type-3 examples (which, as
argued in case (1) above, has error at most 3¢ + 1/n-accurate on such examples
with probability at least 1 —§ — o(1)) is sgn(hz(z,3) — hy (z,3)). We thus have
3e+0(1) > p3 > 1 —o(1) — 3¢ which gives € > ¢ — o(1). (Theorem 4)H

References

[1] R. O. Duda, P. E. Hart, and D. G. Stork. Pattern Classification (2nd ed.). Wiley,
2000.

[2] P. Fischer, S. Polt, and H. U. Simon. Probably almost Bayes decisions. In Pro-
ceedings of the Fourth Annual COLT, pages 88-94, 1991.

[3] P. Goldberg. When Can Two Unsupervised Learners Achieve PAC Separation?
In Proceedings of the 14th Annual COLT, pages 303-319, 2001.

[4] O. Goldreich, S. Goldwasser, and S. Micali. How to construct random functions.
Journal of the Association for Computing Machinery, 33(4):792-807, 1986.

[6] T. Jaakkola and D. Haussler. Exploiting generative models in discriminative
classifiers. In Advances in NIPS 11, pages 487-493. Morgan Kaufmann, 1998.

[6] T. Jebara. Machine learning: discriminative and generative. Kluwer, 2003.

[71] P. Long and R. Servedio. Discriminative Learning can Suc-
ceed where Generative Learning Fails (full version). Available at
http://www.cs.columbia.edu/~rocco/papers/discgen.html.

[8] A. Y. Ng and M. L. Jordan. On discriminative vs. generative classifiers: A com-
parison of logistic regression and naive bayes. NIPS, 2001.

[9] R. Raina, Y. Shen, A. Y. Ng, and A. McCallum. Classification with hybrid
generative/discriminative models. NIPS, 2004.

[10] J. Hastad, R. Impagliazzo, L. Levin, and M. Luby. A pseudorandom generator
from any one-way function. STAM Journal on Computing, 28(4):1364-1396, 1999.

[11] L. G. Valiant. A theory of the learnable. In Proc. 16th Annual ACM Symposium
on Theory of Computing (STOC), pages 436—445. ACM Press, 1984.

[12] V. Vapnik. Estimations of dependences based on statistical data. Springer, 1982.

