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Abstract

The incorporation of unlabelled data in statistical machine learning methods for prediction,

including regression and classification, has demonstrated the potential for improved accuracy

in prediction in a number of recent examples. The statistical basis for this semi-supervised

analysis does not, however, appear to have been well delineated in the literature to date. Nor,

perhaps, are statisticians as fully engaged in the vigourous research in this area of machine

learning as might be desired. Much of the theoretical work in the literature has focused, for ex-

ample, on geometric and structural properties of the unlabeled data in the context of particular

algorithms, rather than probabilistic and statistical questions. This paper overviews the fun-

damental statistical foundations for predictive modelling and the general questions associated

with unlabelled data, highlighting the relevance of venerable concepts of sampling design and

prior specification. This theory, illustrated with a series of simple but central examples, shows

precisely when, why and how unlabelled data matter.
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1 Introduction

Recent interest in the use of so-called unlabelled data in problems of prediction in the machine

learning community has generated a growing awareness of the potential for incorporation of

ancillary design data (sometimes referred to as semi-supervised learning) in classification and

regression problems (Joachims, 1999; Blum and Mitchell, 1998; Szummer and Jaakkola, 2001;

Zhu et al., 2003; Belkin et al., 2004; Bennett and Demiriz, 1999). Mainstream statistical think-

ing is relatively under-represented in this active and exciting literature; we believe, however,

that statisticians have much to contribute to the emerging discussion, especially in articulation

of the “when, why and how” in regard to use of unlabelled data. Machine learning examples

are typically presented case-by-case, with the semi-supervised analysis usually based on mod-

ifications of (fully supervised) algorithms for classification or regression prediction, with the

introduction of additional components of objective functions that tie-in unlabelled cases. The-

oretical arguments for the additional components are made using a combination of structural

and intuitive arguments, including, most recently, asymptotic arguments on the convergence

of operators on manifolds (Lafon, 2004; Belkin, 2003). There has been some work addressing

the theoretical aspect of unlabelled data (Seeger, 2001; Castelli and Cover, 1995; Cozman and

Cohen, 2001; Ando and Zhang, 2004) in specific contexts. However, in general, the founda-

tion and rationale for understanding the relevance, and likely effectiveness, of unlabelled data

is still not well understood.

Beginning with an articulation of the basic model framework and assumptions of sampling

and design, we discuss the underlying conceptual and theoretical basis for using unlabelled

data. This is developed in the Bayesian framework for prediction, in which implications for

the incorporation, or otherwise, of unlabelled data in prediction problems becomes transparent.

This theoretical basis is developed in section 2, followed by a series of central, simple yet

illuminating examples in section 3, and summary comments in section 4.

2 General Framework

2.1 Context, Goals and Models

Interest lies in aspects of the joint distribution of two random quantities, (y, x), and the core

prediction problem concerns statements about future values of y based on observing the cor-

responding x. Both x and y may be multivariate, in general. In standard regression problems,

y is a continuous or discrete univariate response; in problems of classification, y is discrete

- often binary. Using p(·) as generic notation for probability density functions, all inference

problems require understanding aspects of the joint density p(y, x).
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The fundamental problem of prediction - whether it be couched in terms of regression esti-

mation or classification - is framed as follows: at a future specified value of x,make statements

about the corresponding value of y. Using ∗ to denote future values of interest, this implies a

directional focus: we want to understand p(y∗|x∗) based on all available data and information.

Statistical models structure the problem in terms of parameters (which may be infinite

dimensional in non-parametric models) that represent all uncertain aspects of the joint proba-

bility distribution for (y, x). By way of notation, the joint density is

p(y, x|φ, θ) = p(y|x, φ)p(x|θ) (1)

where the functional forms of the two densities on the right hand side are completely specified

by the characterizing parameters (φ, θ). Though φ and θ are two distinct symbols in notation,

they can be dependent in various ways as we will see later in section 3. From this joint density,

we can also deduce the implied marginal density for y, p(y|φ, θ), and the implied conditional

density p(x|y, φ, θ).

Sometimes, especially in classification problems, the joint density is parametrised as

p(y, x|ψ, µ) = p(x|y, µ)p(y|ψ). (2)

The conditional density of y given x is essential for prediction, of course, and hence we center

our development on the representation (1). For a joint density parameterized as (2), we can de-

duce the implied marginal density for x, p(x|θ) with θ = θ(ψ, µ) and the implied conditional

density p(y|x, φ) with φ = φ(ψ, µ). This is one of many examples in which the two char-

acterising parameters θ and φ in (1) are functionally related in what might be rather complex

ways.

2.2 Sampling Designs

We refer to the data generation process as sampling design. Data from different sampling

designs provide different information about (φ, θ). Typical sampling contexts fall into the

following categories:

1. Data from the margins:

• Y m = {ym
1 , . . . , y

m
km

} where the ym
i ∼ p(y|φ, θ) are independent, and/or

• Xm = {xm
1 , . . . , x

m
nm

} where the xm
i ∼ p(x|θ) are independent,

but with no connection whatsoever between the two. Having the opportunity to observe

data Y m provides information on aspects of the parameters (φ, θ), and similarly Xm

informs on aspects of θ. Xm is the traditional unlabelled data, though we see that the

same term could also be applied to Y m.
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2. Data from a prospective design: (Y p, Xp) = {(yp
i , x

p
i ); i = 1, . . . , np} are drawn

as a random sample from the full joint distribution p(y, x|φ, θ). Here data are paired

and provide information on both θ and φ. This is the usual regression or classification

design. However, in some cases the Xp = {xp
1, . . . , x

p
np} values are pre-fixed, i.e.,

specified in advance by design. In such a case Xp contains no information about θ,

and we learn about the parameter φ through the likelihood comprised of components

p(yp
i |x

p
i , φ). An interesting example of this design in machine learning is the transductive

framework, outlined by Vapnik (1998), where the objective is to make predictions on

only pre-specified values of x.

3. Data from a typical retrospective design (or case-control design): we observe the out-

comes Xr = {xr
1, . . . , x

r
nr
} at a chosen set of y values Y r = {yr

1, . . . , y
r
nr
}. Here the

data are paired, but Y r provide no information about (φ, θ) since the y values are cho-

sen by design. The data in Xr comprise a set of nr independent random draws from

p(x|y, φ, θ) and therefore provide information about (φ, θ).

The difference between “prospective” and “retrospective” is whether the observed y values

are random or not. Since most examples we will discuss come from a prospective design, for

notational simplicity we will drop the superscript and use (Y,X) to denote (Y p, Xp).

In standard machine learning problems the term “sampling” generally does not relate to the

data generation mechanism, but to different parameterizations (or factorizations) of the joint

distribution assuming the data was generated by a prospective design with x, y random: the

parameterization (1) is referred to as “diagnostic sampling” and (2) is referred to as “generative

sampling” (Seeger, 2001; Cozman and Cohen, 2001).

2.3 Prediction

Suppose we observe data D that provide information about (φ, θ) summarized in terms of the

implied posterior distribution with density p(φ, θ|D). We aim to predict (estimate, classify) a

new case y∗ at a fixed (specified, chosen) value x∗. The prediction problem is solved from the

Bayesian perspective by evaluating the predictive distribution

p(y∗|x∗, D) =

∫

φ∈Φ,θ∈Θ

p(y∗|x∗, φ)p(φ, θ|x∗, D)dφdθ

at the assumed value of the future x∗. This is the key to understanding if - and, if so, how -

any information inD, including unlabelled observations of any kind, impacts on the prediction

problem.

In some cases x∗ will arise as a sample from p(x|θ) and so provide information about θ. In

this case p(φ, θ|x∗, D) depends on x∗. In other cases x∗ is chosen at values we aim to explore
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for potential future outcomes, so that

p(φ, θ|x∗, D) = p(φ, θ|D). (3)

In any example it is important to be aware of the distinction but, for our development here, it

is a side issue and we assume the latter case (3) as it simplifies the notation.

The usual notion is that Xm is the unlabelled data in question - information relevant to

understanding the distribution of the predictor variables alone. Hence interest focuses here on

how Xm comes into the evaluation of the above predictive density. All forms of information

enter in through D, so for Xm (and any other information) to be relevant in prediction it is

necessary that it play a role in defining the posterior p(φ, θ|D).

Regarding the definition of each of the possible data sources arising, the most general

framework has observations on each of Y m, Xm, (Y,X), (Y r, Xr). In this most general case

we then have, via Bayes’ theorem and under a specified prior p(φ, θ),

p(φ, θ|D) ∝ p(φ, θ)p(D|φ, θ)

with

p(D|φ, θ) = p(Y,X|φ, θ)p(Xm|θ)p(Y m|φ, θ)p(Xr|Y r, φ, θ).

In general, this will depend in complicated ways on all aspects of D, including various aspects

of the unlabelled data Xm. Investigating this dependence is the key to understanding the rele-

vance and specific potential uses of unlabelled data . Some specific and typical cases focus the

discussion.

2.4 Common Framework of Regression and Classification

For convenience and clarity, we start our discussion in the simple regression/classification

context where data arise from a joint random sample D = (X,Y ). Then

p(φ, θ|D) ∝ p(φ, θ)p(Y |X,φ)p(X|θ).

For example, we may have a linear or nonlinear regression model for (y|x) in which φ repre-

sents the uncertain regression parameters or regression function.

Now imagine that we have the opportunity to additionally observe or measure some unla-

belled data Xm. The modified posterior with D = {Y,X,Xm} is then

p(φ, θ|D) ∝ p(φ, θ)p(Y |X,φ)p(X|θ)p(Xm|θ).

We deduce the following:
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• If φ and θ are independent under the prior, p(φ, θ) = p(φ)p(θ), then

p(φ, θ|D) = p(φ|Y,X)p(θ|Xm, X).

That is, prior independence leads to posterior independence, and, as a result

• the unlabelled data Xm is irrelevant to learning about φ, and hence irrelevant in predict-

ing new y∗, if φ and θ are a priorı́ independent. This is because

p(y∗|x∗, D) =

∫

p(y∗|x∗, φ)p(φ, θ|D)dφdθ =

∫

p(y∗|x∗, φ)p(φ|Y,X)dφ

by the posterior independence.

In other cases, the posterior for (θ, φ) may involve dependencies. Therefore, additional infor-

mation generated from marginal data will have an impact on the prediction problem via the

integration over the posterior that defines p(y∗|x∗, D). In the general framework, data from

Y m, Xm, and (Y r, Xr) will all have an impact on the prediction problem.

In this simple context, it is transparent that formal model-prior connections between the

“regression component” parameters φ and the “x−marginal” component parameters θ are nec-

essary if unlabelled data, as it is traditionally defined, is to play a role. How such dependencies

arise, and what forms they take, depend on context, and some examples now illuminate this.

3 Specific Contexts and Examples

3.1 Normal linear regression models

In the usual normal linear regression model, φ = (β, τ) is the set of regression parameters

from the model

y|x, φ ∼ N(β ′x, τ2)

where x and β are k-dimensional vectors. One way such models arise is from assumed joint

multivariate normal distributions for (y, x′), namely the (k+1)−dimensional normal N(µ,Σ)

where

µ =

(

µy

µx

)

, Σ =

(

σ2
y ρ′

ρ Σx

)

,

for some scalar parameters µy, σy, k−dimensional vector of covariance parameters ρ, and k×k

variance matrix Σx. Under such a model we have p(x|θ) = N(µx,Σx) and characterizing pa-

rameter sets φ = (β, τ) and θ = (µx,Σx), each being obtained via parameter transformations

from (µ,Σ).

Some contexts include:
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• A direct specification of the prior p(θ, φ) = p(θ)p(φ) that assumes independence, and

so implies that unlabelled Xm data will be irrelevant to prediction of future y∗.

• A direct specification of the prior p(θ, φ) with dependence, such as β|φ ∼ N(0, τ 2Σ−1
x ),

which induces a relevance of the unlabelled data since Xm provides information about

φ indirectly through its relevance for θ.

• An indirect specification in which the initial prior is defined for (µ,Σ), with the prior

p(φ, θ) being implied by transformation. A common approach is to use the conjugate

normal-inverse Wishart prior distribution. Any prior in this class has the property that

the implied prior on (φ, θ) is in fact one in which φ and θ are independent (Geiger and

Heckerman, 2002; Dobra et al., 2004).

This last example illustrates a case in which modelling prior information on parameters of the

joint distribution of y and x using a standard conjugate implies that the unlabelled Xm data

will be irrelevant for predicting y∗. This result arises more generally in exponential family

models. Other priors may, and usually will, lead to prior and then to posterior dependence, and

in such cases, then, unlabelled data is relevant.

3.2 Binary outcomes example

A simple but illuminating example is the case of binary y and binary x. For thematic context,

suppose x = 1/0 represents the presence/absence of mutation in the BRCA1 breast cancer

gene in a woman, and that y = 1/0 represents occurrence of breast cancer before age 70.

In terms of the directional specification of the joint density as p(y|x, φ)p(x|θ), the param-

eters are now just three probabilities, φ = (φ0, φ1) and θ where

• φx = p(y = 1|x, φ) for x = {0, 1}, and

• θ = p(x = 1|θ).

In the breast cancer genetics example, θ is the incidence rate of the BRCA1 mutation, φ0 is the

base rate for breast cancer in the general (wild type) population of women and θ1 the (higher)

cancer rate among carriers of the mutation.

Here we have prediction defined by

p∗ = p(y∗ = 1|x∗, D) =

∫

Φ,Θ

φx∗
p(φ, θ|x∗, D)dφdθ.

Then:

• As in regression example above, if we directly specify independent priors on θ and φ

then p∗ does not depend on the unlabelled data.
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• In the joint space, we have cell probabilities p(x, y) on x = 0, 1, y = 0, 1 defined by

π = {π0,0, π0,1, π1,0, π1,1}.

Common approaches utilize Dirichlet priors on π. If we choose a Dirichlet prior p(π)

and find the implied prior p(φ, θ) by transformation, the result is prior independence of

φ and θ, and again the unlabelled data is irrelevant to prediction.

• Suppose we have a prior on π that is a discrete mixture of two (or more) Dirichlets. For

example, suppose that our breast cancer samples come from an inhomogeneous popula-

tion having two genetically and environmentally different subpopulations in connection

with inherited breast cancer related characteristics and lifetime cancer risks. In this case

a reasonable prior would have the form

p(π) = ap0(π) + (1 − a)p1(π)

where p0 and p1 are two different Dirichlet priors, though the sampling design cannot

distinguish between the subpopulations.

It then follows by transformation that

p(φ|θ) = w(θ)p0(φ) + (1 − w(θ))p1(φ)

where p0 and p1 are the implied margins on φ from each of the two Dirichlets, and the

mixing probability w(θ) is computed, at any conditioning value of θ, using

w(θ)

1 − w(θ)
=

a

(1 − a)

p0(θ)

(1 − p1(θ))
.

Thus under a mixture prior of this form, θ and φ are dependent. Hence the unlabelled

data Xm will feed through to provide information about y∗ indirectly via θ and the φ

(unless, of course, p0(φ) and p1(φ) happen to be equal).

3.3 Mixture model examples

In classification problems, it is often assumed that x is from a mixture distribution and each

component of the mixture corresponds to a class which is indicated by y (West, 1992). For

example, in binary classification, the joint distribution can be described as follows: x ∼ f0(x)

when y = 0, x ∼ f1(x) when y = 1, and p(y = 1) = π where 0 ≤ π ≤ 1. In a Gaussian

mixture model, for example, f0 and f1 are Gaussian densities parameterized by different mean

and covariance structure (Lavine and West, 1992). Here we parameterize the joint density by

the marginal of y and the conditional of x given y. If we then transform it back to the (φ, θ)

parameterization as in (1), we see that θ and φ are dependent as we discussed at the end of
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section 2.1. So it is clear that the unlabelled data Xm is informative in this context. Indeed,

various semi-supervised approaches have been proposed to take advantage of the information

in Xm and the effectiveness of Xm has been either implicit or explicitly well-studied (Mueller

et al., 1996; Nigam et al., 1998; O’Neill, 1978; Ganesalingam and McLachlan, 1979, 1978;

Castelli and Cover, 1995).

Such a model also arises in retrospective studies. Since y values are pre-specified there, the

likelihood of (xr
i , y

r
i ) is equal to either f0 or f1 and does not depend on π; information about

π is, for example, generated from observations on unlabelled Y m data. In this case, unlabelled

data Xm or Y m is not only informative and relevant, but is also necessary to the prediction

problem.

3.4 Factor regression example

Factor regression is a useful tool for regression problems with high dimensional predictors. Re-

gression of a response variable on principal components (singular factors) is a special limiting

case of “empirical factor model”.

West (2003) formalised the development of large-scale, latent factor models coupled with

regression on latent factors, and so delineated a comprehensive framework for predictive mod-

elling in the “large p, small n” paradigm. This elucidated the theory underlying Bayesian

modelling using principal component projections of high-dimensional covariates/predictors as

a limiting case of a broader class of regression models where the predictors are latent variables.

This framework and theory also clarified and justified the use of so-called g−priors (Zell-

ner, 1986) for Bayesian shrinkage regression, and defined novel classes of multiple shrinkage

methods that are significantly beneficial in prediction problems through the ability to induce

differential shrinkage in different factor-predictor dimensions.

To be specific in the context of a normal linear model example (the principles are of course

more general), suppose we have a model in which a univariate (for the sake of example) re-

sponse y is to be predicted based on a (high-dimensional) p × 1 predictor variable x, and we

have

yi = α′λi + εi

and

xi = Bλi + νi

where εi ∼ N(0, σ2), λi ∼ N(0, I) is a k × 1 unit multivariate normal latent factor for each

i, B is an uncertain p × k matrix of factor loadings of x on λ, νi ∼ N(0,Ψ) is a vector of

idiosyncratic noise term, and Ψ is an uncertain diagonal variance matrix. Also, the νi and εi

are conditionally (on all model parameters) mutually independent and independent over i.
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This framework is a key example of context when unlabelled data matter. Fundamentally,

the outcomes y to be predicted are modelled as responses in regressions on latent variables

λ, and the observed concomitant x variables are related to λ, while y and x are conditionally

independent given λ. Thus the predictive relevance of x is indirect, through λ.

By marginalization over λ of the implied joint multivariate normal distribution of y, x and

λ, it becomes clear that we can identify p(y|x, φ) as a normal linear regression of y on x with

regression parameters and residual variance φ = φ(α, σ,B,Ψ). Also, the implied margin for x

is normal with zero mean and variance matrix θ = BB ′ +Ψ. In this framework, if {B,Ψ} are

known, then θ is known. So the values of any observed, unlabelled data Xm has no influence

whatsoever in the problem of predicting a future y∗ given other data from either prospective or

retrospective designs. However, the usual circumstance is that in which {B,Ψ} are uncertain

and to be estimated. Then,

• Additional unlabelled data Xm provide information relevant to improved estimation of

these parameters, and hence of relevance to predicting future y∗ values via the transfer

of information through inferences on the future λ∗ related to x∗.

• The dependence of φ on aspects of θ, indirectly through their functional associations with

the factor model parameters, implies that any relevant prior p(B,Ψ, α, σ) will induce

prior dependencies between φ and θ.

3.5 Kernel regression example

An interesting class of examples, which are central to the methodological interfaces of statistics

and machine learning, arise in models based on kernel regression, including Bayesian models

of kernel regression (Liao et al., 2005).

The context is non-parametric, non-linear regression with y ∈ IR, x ∈ IRk, and a model of

the form

y = f(x) + ε,

where ε is zero-mean noise term and f(·) is an uncertain regression function. As an example,

the class of Bayesian radial basis (RB) models (Liao et al., 2005) deals with questions of proper

probability models - and the resulting proper inference and predictive results that then arise -

for uncertain knots in a kernel model. This framework, and other approaches, begins with the

interest in a representation of the form

f(x) =

∫

w(u)k(x, u)dG(u) (4)

for some weight function w(u) over k−dimensional u, and some specified kernel function

k(·, ·). The element G(·) is a probability distribution function in k−dimension. The key to the
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model is to note that, if G is discrete and put masses gi at support points (or “knots”) ui, then

the expression for f(·) is simply

f(x) =
∑

i

giw(ui)k(x, ui),

i.e., a radial basis function representation. The analysis of Liao et al. (2005) describes approx-

imations to a model in which uncertainty about G is expressed using a Dirichlet process prior

(Ferguson, 1973; Escobar and West, 1995). One implication of such a model for G is that,

since Dirichlet processes are discrete with probability one, the formal mathematical model for

f(x) is the sum above with a countably infinite number of knots ui. From the methodological

viewpoint, both labelled and unlabelled x values provide information about G directly. In fact,

with a sample of n labelled and/or labelled x values x1, . . . , xn (whether fromX ,Xm, or some

combination of the two), this Dirichlet process model implies that f may be approximated by

f̂n(x) =

n
∑

i=1

wn,ik(x, xi) (5)

where wn,i ∝ w(xi). The key methodological relevance of this approach is that this is true

for all n, so providing consistency as sample size increases and additional design points are

observed. This leads to the practical model in which each y∗ is linearly regressed on the set of

kernel predictors {k(x∗, xi)} based on whatever set of design points are observed.

This is a perfect example of when, why and how unlabelled Xm data matter, and of course

the conclusions hold for other versions of kernel and RB analysis. In particular, we note that:

• θ = G(·) so that p(x|θ)dx = dG(x) - the parameter is the full distribution function

itself.

• p(y|x, φ) depends intimately on θ = G as defining the nonlinear kernel regression; in

fact, θ ⊆ φ in this case. Thus prior and posterior dependence of θ and φ is central to the

model.

• As a result, unlabelled Xm provides direct, immediately and hugely relevant information

in prediction of y∗.

Key connections with machine learning approaches are made by noting that the central model

of equation (4) corresponds to the solution of the manifold regularization formulation of Belkin

et al. (2004). This approach, motivated by geometric arguments, is an optimization that seeks

f∗ = arg min
f∈HK

1

n

n
∑

i=1

V (f(xi), yi) + γA||f ||
2
K + γI ||f ||

2
I ,

where {(yi, xi)}
n
i=1 are the labelled data, HK is a Reproducing Kernel Hilbert Space (RKHS),

V (f(x), y) is a loss function, ||f ||2K is the RKHS norm, γA, γI are regularization parameters,

and ||f ||2I is an norm that reflects the smoothness of the function on the marginal p(x). If
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the marginal is concentrated on a manifold, x ⊂ M ∈ IRk, then a natural choice for ||f ||2I
is the Laplacian on the manifold. In general, the marginal p(x) is not given but we may

have unlabelled data Xm from the marginal, in which case the Laplacian on the manifold

may be approximated by a Laplacian on the graph defined by the observed data (labelled and

unlabelled)

f̂n(x) = arg min
f∈HK

1

n

n
∑

i=1

V (f(xi), yi) + γA||f ||
2
K +

γI

(n+ nm)2
f
T
Lf ,

where L is the graph Laplacian on all the data (given a weight matrix on the graph) and f =

{f(x1), ..., f(xn), f(xm
1 ), ..., f(xm

nm
)}. The solution to the above optimization problem has

the form

f̂(x) =
n
∑

i=1

wik(x, xi) +
nm
∑

i=1

wn+ik(x, x
m
i ),

which takes the same form as approximation (5) formulated from the Dirichlet process prior.

4 Summary comments

Beginning with a simple, clear articulation of the basic sampling and design specifications

underlying statistical formulations of prediction problems, we have delineated the theoretical

issues underlying the use and relevance, or irrelevance, of unlabelled data in classification

and prediction problems. This, coupled with a series of central yet simply described and

understood examples, provides an overview and synthesis of the ideas underlying the emerging

methodology of semi-supervised learning in the machine learning and statistics literatures.

Graphical model representations of the joint sampling model context aid in this interpre-

tation. The relevance, or otherwise, of the unlabelled Xm data can be deduced essentially

by inspection of the implied (undirected) graphical representation of any full model struc-

ture. For example, the full distribution assuming joint sampling, and in cases for which

p(φ, θ) = p(φ)p(θ), is illustrated in graphical terms in Figure 1. The joint density exhibited

here is

p(y∗, x∗, Y,X,X
m, φ, θ) = p(y∗|x∗, φ)p(Y |X,φ)p(X|θ)p(x∗|θ)p(X

m|θ)p(φ)p(θ).

Figure 1(a) is a directed acyclic graph of the joint distribution structured in terms of compo-

sition of sampling distributions. Figure 1(b) displays the corresponding undirected graph in

which the lack of an edge between Xm and y∗ indicates conditional independence given all

other quantities, hence the irrelevance to prediction of the unlabelled data in this case. In con-

trast, were φ, θ to be a priorı́ dependent, then the five nodes of the undirected graph would be

fully connected, exhibiting the relevance of the unlabelled data to prediction of y∗.
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Figure 1: Directed graph (a) and undirected graph (b) in cases of independence of φ, θ.

In addition to clarifying and exemplifying the structure of models and the prediction prob-

lem with unlabelled data, one aim of this work has been to review the area to provide a link

across the mainstream statistical to machine learning communities. We hope that this will

entice more statistical researchers into a very active, productive and exiting research milieu,

while also founding the discussion in venerable, simple and unambiguous terms arising from

the direct and classical probabilistic formulation. This view directly, we believe, addresses and

answers the questions of “when, why and how” unlabelled data help in predictive modelling.
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